月度归档:2014年01月

Deep Learning Specialization on Coursera

计算机网络与信息安全公开课汇总

鉴于近期与计算机网络和信息安全方面有关的新闻层出不穷,课程图谱为各位汇总了目前(2014年初)MOOC平台与相关领域有关的公开课程。
计算机网络

1. University of Washington的Computer Networks

@wzyer:这门课是现今所有mooc平台上最全面的一门介绍计算机网络的课程。课程以网络的OSI七层模型为主线,全面覆盖了支撑现有互联网的各种基础架构和协议。其中又有重点地讲解了 TCP/IP,HTTP,802.11等常用基础协议,目的是使所有上完课的同学,都能够对于数字信号如何在网络上传播有一个清晰的认识。就我自己上完课的感受来说,这门课完全能够完成这个任务。
不过,如果从讲解和交互性上来说,这门课还是难以与一些精品课程相媲美,只能算是一般水平。老师对于各个问题的讲解基本遵循了“提出问题-》解决方案-》应用实例”的顺序,所举的小例子也足够简单清晰,所以不会出现难于理解的情况。但是从交互性和趣味性上说,有意思的讲解不多,也没有什么特点突出的、有趣的内容来让人加深理解。因此上课的时候常常让人觉得乏味。个人认为这一点以后还有很大的改善空间。
其实说这门课程很无趣也并不准确。整个课程里还是时常会有有趣的事情发生,比如空中飞来飞去的小花盆,比如在老师背后扮鬼脸的吃货小萝莉。好吧……也许有人会喜欢这个。不过这个确实……确实和主题关系不大。只这能算是为课程增添一点有趣的小插曲。
这门课的作业分为两个部分,一部分是选择填空题,这部分的分数和最后的证书密切相关;另一部分则是编程和一些网络工具的使用,这个不计分,只是帮助加深理解。由于时间关系,我上课的时候并没有完成第二部分。但我仍然强烈建议想认真学习这门课程的同学去完成编程以及网络工具使用这一部分。虽然这里不算分,但对于课程内容的理解是大有裨益的。
最后该说说老师了,David Wetherall 是计算机网络方面的专家。也是著名的计算机网络教材:Computer Networks的作者之一。这本教材在Amazon上评分是3.9分,要高于著名的SICP,当然和一些大牛的接近5分的经典巨著没法比,不过也绝对够得上好书的标准了。而且他作为老师所讲授过的课程全部是计算机网络相关的,可谓相当专一。因此,完全不用怀疑老师的专业性。
最后,我把这门课推荐给想了解计算机网络的相关知识的同学,也许它算不上很深入,但绝对能为你以后的深入学习打下坚实的基础。

@超級現實的超現實理想主義者:内容覆盖非常全面的一门课,可以看出老师的用心。不过正如@wzyer 所说的:“提出问题-》解决方案-》应用实例” 的授课方式,这门课还是显得比较传统,虽然老师的授课水平不用质疑,但是交互体验还是有点欠缺,毕竟计算机网络是一门偏重工程的课程,如果在Link Layer以上的部分能够将一些概念通过现实中的工具进行演示效果可能会更好一点。可能老师也发现了这个问题,于是大家就看到了老师和他的家人为此作出的努力(看过视频大家就知道我在说什么了,哈哈)

2. Stanford University的Networking: Introduction to Computer Networking:该课与上面华盛顿大学的课程内容基本类似,讲师分别是Philip Levis和Nick McKeown,其中Nick McKeown在计算机网络领域享有很高的盛名。

3. Georgia Tech的Software Defined Networking:该课讲述的是目前比较热门的领域:软件定义网络(Software Defined Networking),讲师Nick Feamster是该领域非常权威的人物。

4. Princeton University的Networks: Friends, Money, and Bytes:该课通过20个问题来讲述互联网如何渗透日常经济生活的方方面面,例如:Google是如何为网页进行排序,移动电话网络的运行规律,Netflix如何为用户推荐影片等等。该课的同名教材Networks: Friends, Money, and Bytes在美国亚马逊上也获得了很高的评价。

5. Princeton University的Networks Illustrated: Principles without Calculus:课程内容类似上面的Networks: Friends, Money, and Bytes,不过课程内容少了很多数学理论,适合数学基础薄弱的朋友。

6. University of Michigan的Internet History, Technology, and Security:该课介绍了与互联网有关的历史,例如因特网的诞生,万维网的历史,互联网传输协议等等,是一门科普性质的互联网历史课。

信息安全

1. Udacity的Applied Cryptography

@wzyer:我很喜欢这门课。能把这样一个偏数学的主题讲的这么有趣本身就很难得,编程作业更是吸引人。记得讲RSA的单元的作业是破解十多段密文,每一段解密后的明文都是下一段的线索,环环相扣,很有意思。而且这门课难度也不低,想完全掌握还是需要很多思考的。

2. Stanford University的Cryptography I 该课已经进行过多轮:

@Candy的爸爸:Stanford的密码学线上课程,主讲Dan Boneh非常给力,语速很快,是密码学界的大牛。每周的课程内容很多,主要讲了密码学的原理,包括流密码、对称密码、非对称密码,加密认证、完整性算法等。课程内容很值得推荐。我花了非常多的时间来学这门课

3. Stanford University的Cryptography II:该课距公布至今已经一年多,经历过数次推迟。从官方的信息来看预计即将开课,究竟会不会再次推迟让我们拭目以待。

4. Stanford University的Computer Security:该课与Cryptography I&II是同一个讲师Dan Boneh,该课的内容围绕与计算机安全有关的话题。目前还不清楚开课时间。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接: http://blog.coursegraph.com/计算机网络与信息安全公开课汇总

数据分析公开课汇总

数据分析是如今非常热门的话题之一,课程图谱为此简单整理一下目前(2014年初)在MOOC平台上有关数据挖掘方面的公开课程。
Coursera

1.  Johns Hopkins University的Data Analysis 该课通过R语言讲授数据分析的技巧:

@Cloga在路上:很好的一门课程,用R为工具讲了数据分析挖掘的一些算法和实例。

2. University of Washington的Computational Methods for Data Analysis 该课为课堂录像,通过MOOC的形式进行组织,讲师Nathan Kutz讲课生动、幽默,但是该课不足之处是课程不提供证书激励且几乎没有课程工作人员参与讨论,属于自助性质的课程。

3. University of Washington的Scientific Computing:科学计算是很多工程应用领域的基础课程,该课的讲师同样为Nathan Kutz,课程形式与上一门Computational Methods for Data Analysis基本一致。

4. University of Toronto的Statistics: Making Sense of Data

@Mavlarn008:就像这门课的标题“making sense”一样,这门课最好的地方就是让你对统计有”感觉”。虽然讲的比较简单,但是对于理解这些概念非常有用。 最后那个大胡子还自弹自唱一首他自创的有关这门课的歌,也很有意思。

5. University of Washington的Introduction to Data Science

@Cloga在路上:很好的一门课,尤其对于我这种初学者,老师讲的面很广,涉及了数据科学的很多方面。
不足之处是课程内容过多有些内容讲的很匆忙,比如数据可视化这个部分,大家普遍反馈讲的有点水,Graph那部分也有点水。
比较好玩的是,课程结束后Bill好像有些事情,拖了一段时间才给出分数,大家在课程论坛上各种吐槽,无比欢乐。

@伟伟酱说:正如老师开始所讲的,这门课的目的只是让你成为advanced beginer,课程内容涵盖了数据库(SQL,NoSQL),MapReduce,基本的数值分析,机器学习,数据可视化。类似于另外一门课Web intelligence and big data,两者都应该算是入门型课程,学生想要深入学习的话可以选择其他专门的课程。
有人认为老师讲课枯燥,你总不能指望每个老师把数学课讲的有历史课那么有趣吧~

@钛合金蛙眼: 希望和失望并存。。。课程内容结构很好,讲的不好;作业很赞,对有一定基础的人不难,但入门的同学可能还是有困难。如果只是想粗浅了解课程各个topic的,跟着做作业就不错,想深入还需自学

6. Columbia University的Big Data in Education:该课讨论的是将数据分析的技巧运用于教育领域

7. Johns Hopkins University的Computing for Data Analysis

@宋鑫要学习:想入门R语言的可以听听。我自己之前有看过一些R的入门书籍,但是总感觉云里雾里,这门课让我感觉自己摸着点门道

@Puriney:这门课更确切说确实是R语言指南,很多实用并且系统地把R用法娓娓道来,没有啥算法,因此可能有人觉得不象一门综合大学的课程而更象蓝翔技校般的技能课。我想跟当时课程开课有一定关系,当时我记得是这门4周课时的课(很精简了)先开(Roger Peng主讲),结束之后马上接着便是Roger Peng的好基友Jeff Leek (他们都是http://simplystatistics.org/博客的共同博主)讲的Data Analysis。Jeff的这门课就更加复杂,作业里有更多计算成分在,就不那么“技校”了。 p.s. 这是我唯一一门上完不那么费脑力的课(相比那些算法的课)。Jeff的这门我没有坚持到底,当时我很讨厌“互相批改”的评分制度(如果没记错)

@要有光LTBL:R讲的挺好的,一直在用但是知识体系并不是很系统。这门课还是讲得不错的。。。

@wzyer:这门课就应该叫作R使用手册。全是R的语法与应用,有些让我失望。语法什么的太琐碎,很容易遗忘,放到课上讲太多语法个人以为不妥。

 

8. Stanford University的StatLearning: Statistical Learning:名著The Elements of Statistical Learning: Data Mining, Inference, and Prediction(ESL)的作者Trevor Hastie和Rob Tibshirani开设的课程,本课的配套教材An Introduction to Statistical Learning: with Applications in R在美国亚马逊上获得了极高的评价,在课程中该教材将会免费对外开放

9.Duke University的Data Analysis and Statistical Inference:该课将会由R语言讲授统计学和数据分析方面的内容,欢迎关注

Udacity
Udacity近期与企业界合作推出了一些数据分析领域的课程,课程内容本身对外公开免费,但如果需要获得证书以及专门的在线辅导的话则需要支付一定的费用。
1. Introduction to Hadoop and MapReduce:

@ziyoudefeng: 这门课程太简单了,google搜索 mapreduce PPT 出来的这些PPT,看上几个也都抵上这三节课了。不过,总共也就3节课,听听也无妨。讲的内容很初级,小白用户可以网上的讲义加视频一起学习!

2. Introduction to Data Science

3. Data Wrangling with MongoDB

4. Exploratory Data Analysis

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接:http://blog.coursegraph.com/数据分析公开课汇总

经济学/金融学公开课盘点

之前有朋友在课程图谱的QQ群里(群号:244689946)询问过是否能够对经济学/金融领域的公开课课程进行一次汇总。在进行了相关资料的收集和整理以后,课程图谱将目前MOOC平台上有关经济/金融方面的课程进行简单的整理。鉴于目前有大量的相关课程,本篇挑选了比较重要的一些进行罗列,希望能够给大家一个比较完整纲领.

经济学领域

微观经济学

1. 宾夕法尼亚大学的Principles of Microeconomics

2.UCIrvine的The Power of Microeconomics: Economic Principles in the Real World

3.伊利诺伊大学香槟分校的Microeconomics Principles

@ototsuyume:总的来说这门微观经济学是不错的课程,即使只完成quiz也能拿到证书。假如时间多又想锻炼一下英语的话也可以去做project,每个project都完成了后据说证书上有特殊的标识。不过这门课没有ppt,老师提倡的做法是反复观看你不懂的那部分的视频,看到懂为止,这就是mooc的好处,问题在于对于时间不多的人来说,这是十分花费时间的过程

以上几门都是比较传统的微观经济学课程,主要都介绍了“供给-需求”,“资源分配”,“竞争”等等比较经典的微观经济学概念,各位可以根据自己的情况选择一门进行学习。

4.斯坦福大学的Game Theory

@wzyer:我只上过这个课的第一轮,不得不说,不算是一个太好的体验。总体课程显得内容很多,进度很快。不过据说后面开课做了很大优化,我就不清楚了。

社会网络属于一门数学、计算机、经济学、社会学的交叉学科,鉴于微观经济学的重点在于讲授经济学领域的工具,所以将有关社会网络的课程暂时列入微观经济学领域:

5.宾夕法尼亚大学的Networked Life

6.密歇根大学的Social Network Analysis

@MrDeadline:拿到了证书。这门课难度不是很大,每周的homework都是选择题且可以多次尝试得到满分,编程作业只有四次,偏简单。Lada介绍了很多概念,但都仅涉及初级部分,作为入门了解课程挺不错。编程作业虽然很少,但是用到了不同的SNA工具,特别是Gephi可视化工具的大量使用,我觉得可以激发很多学生继续学习这个领域的兴趣。

7.北京大学的人群与网络 People & Networks

8. 康乃尔大学的Networks, Crowds and Markets:其中两位讲师Jon Kleinberg和Eva Tardos是经典教材Algorithm Design的合作者

宏观经济学:

1.墨尔本大学的Principles of Macroeconomics

2. UCIrvine的The Power of Macroeconomics: Economic Principles in the Real World

3.威斯康星大学的Markets with Frictions

宏观经济学从某种角度上说属于微观经济学的进阶,通过从微观经济学学到的工具来分析和解决现实社会中比较宏观层面的问题

计量经济学/数学:

1. 加州理工的Principles of Economics with Calculus:据称该门课程的内容和难度与加州理工本校的课程完全一致,将有很大一块比重在数学模型上。需要一定的数学基础

2. 华盛顿大学的Mathematical Methods for Quantitative Finance

@钛合金蛙眼 :内容包括微积分,线性代数,最优化再捎带一些金融知识,都是数据挖掘和机器学习数学基础(除了概率统计),老师也讲的很清楚,只可惜没有证书,UW开的几门课程都不错

3. 华盛顿大学的Introduction to Computational Finance and Financial Econometrics

@要有光LTBL:前几周难度略低,从第7周左右才真正开始讲有趣的,前面还是概率统计什么的为主。作业基本上属于太简单(当然这是本科课)。。。R的覆盖还是不错的,视频虽然是课上录的但是质量还可以,不过不能下载视频和没有statement of accomplishment是挺讨厌的。

对于数学基础比较薄弱的朋友,课程图谱博客整理了数学方面的公开课方便各位根据自己的需求进行选择:http://blog.coursegraph.com/数学基础公开课汇总

金融学领域

投资学与资产定价:

1.密歇根大学的Introduction to Finance:该课属于Coursera在中国最受欢迎的课程之一,覆盖了股票、债券,以及资产定价的基础知识,属于不错的入门选择

@Exolution:我之后再听沃顿商学院Franklin Allen教授的Introduction to Coporate Finance的课程时,觉得非常流畅顺利,相信除了因为沃顿的课程本身品质不错外,之前Gautam Kaul教授的这门课还是起了很大帮助的。尽管内容不够紧凑丰富,但是对于新人来说这门课还是不错的金融入门课。 (点击查看完整评论..)

@ototsuyume:这门课跟ng的机器学习貌似是coursera最热门的三门课之一,内容很基础,连期货期权这些都没涉及到。但是作业有点难度,主要是老师上课的讲的例子太少也很简单。给的资料不是很多,课后作业的题解也只给了一道题目的讲解。要是给的资料啊题解什么的多一些就好了

2. 芝加哥大学的Asset Pricing:芝加哥大学是经济学和金融领域的重镇,该门课程属于PHD级别的课程,据称有相当的难度。对于有一定基础的朋友可以尝试一下。

3. 佐治亚理工的Computational Investing, Part I:该门课程适合计算机领域背景的朋友,希望能够了解一些金融学知识和金融交易方面的技巧。

货币银行学:
1. 耶鲁大学的Financial Markets:该课的讲师Bob Shiller获得了2013年的诺贝尔经济学奖。重量级的人物请自授课,千万不要错过

2. 哥伦比亚大学的Economics of Money and Banking, Part One

3. 哥伦比亚大学的Economics of Money and Banking, Part Two

金融工程和风险管理:

1. 哥伦比亚大学的Financial Engineering and Risk Management Part I

2. 哥伦比亚大学的Financial Engineering and Risk Management Part II

该领域主要是通过介绍和分析金融衍生品例如期权、互换等工具来进行盈利和风险对冲

财务:

1. 沃顿商学院的An Introduction to Financial Accounting:

@范昊坤:1. 课程完全为网络学习设计,视频精心制作,PPT课件和案例详尽。对于有那么一点聊胜于无的底子的我来说(十几年前学过一点基础的会计,基本了解资产负债表和借贷平衡,更多的就早已经还给老师了),难度应该正好,内容深入浅出。如果是完全没有接触过会计的童鞋,在最初两周的学习过程中可能会略微吃力一点,但是应该很快就能和我的基础齐平了。不过即便如此,后几周的课程还是略有点难度的,做作业的时候经常需要翻笔记,考试时如果不能对会计有大概的融会贯通的话,想拿高分或者满分还是略有难度的,所以切不可掉以轻心。(点击查看完整评论…)

@超級現實的超現實理想主義者: 能把会计这么无聊的一门课讲到这种程度确实不容易,讲师Brian Bushee在最后告别视频里说,大意就是:之前会计师协会的人对他说MOOC虽然很火,但是这把火是烧不到会计这门课,他想用实际行动证明他们错了。
我觉得他做到了,向他致敬!(点击查看完整评论…)

2. 清华大学的财务分析与决策:该课一上线就受到了广泛的好评

3. 沃顿商学院的Corporate Finance:

@范昊坤:作为沃顿四门MBA入门课程之一的这门课可圈可点,待俺慢慢八来。
1. Dr. Allen是学界牛人,教科书Principles of Corporate Finance的合著者之一。据童鞋们指出是一口地道的牛津腔。老师说话慢条斯理,灰常柔和,声线可谓很有特色,对于我来说,听了几周以后,慢慢也就习惯了(点击查看完整评论…)

@Exolution: 课程内容安排的非常紧凑,虽然时间短但是相比Gautam Kaul教授的课程内容广度和讨论深度都胜一筹。不过,Franklin Allen教授这门课上,假设公司只通过发行股票筹集资金,所以不存在根据负债比例调整股票期望收益率的问题,WACC模型自然没出场的份了,这部分内容得去Gautam Kaul教授课上补。此外,这门课可以不看听课,但是Notes必须得研究。Notes写的很详细,而视频上就比较粗的过一遍,然后针对课上学生提问的地方稍微详细的讲解一下。所以这门课如果不研究Notes,只看视频的话,恐怕会很难理解的。而且Franklin Allen教授第一节课也明确要求了需要读Notes,不读的话听不懂课可不能抱怨课讲得不好哦(点击查看完整评论…)

行为金融学:

1. 杜克大学的A Beginner’s Guide to Irrational Behavior:该课虽然属于心理学领域,但是对于了解行为经济学(金融学)会有很大的帮助和指导意义

@点儿618: 这是我上过的最好的课程,没有之一。从这门课的制作可以看出,大名鼎鼎的《怪诞行为学》作者Dan Ariely的成功真的不是偶然。和其他课程比起来,他是经过精心准备的,每一个视频、课程结构都是经过精心设计的。并不是在办公室或者家里拿个摄像头随便一录。他尽量用图片的语言帮助你理解,即使英文不够好,借助字母和他的图片,也能明白大意。他还在每周课程一开始讲一个笑话。有完备的reading list,分为必读和选读。每周有office hour。还请了其他心理学家客串讲座。
总之,整个课程的制作都非常用心,水平很高。内容又不是任何一本教材,而是非常贴近生活的行为经济学。
可以轻松愉快地学到这些有用的东西。
上完了这个课,Dan完全替代了前任,成为了这阶段我最喜爱的心理学家。

 

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接:http://blog.coursegraph.com/经济学金融学公开课盘点