Deep Learning Specialization on Coursera

作者归档:admin

Deep Learning Specialization on Coursera

2014年9月份MOOC部分热门课程汇总

又到了一年的开学季,几大MOOC平台又有不少质量很高的课程轮番推出,本文将对9月已经或者即将开设的偏向计算机科学类的课程进行一个简单的选择和汇总,各位可以从中选取自己感兴趣的课程。

Coursera:

1. 杜克大学的 Data Analysis and Statistical Inference

本课讲授比较基础的统计学,但不同于传统的统计学内容,本课将很大一部分精力用在锻炼学生的实际动手能力。部分课程练习是在一个叫“DataCamp”的平台上完成的,力求学生能够通过实际练习解决现实中的问题。

2. 斯坦福大学的 Automata

本课属于比较传统的计算机科学理论课程,讲授了计算理论和复杂度方面的内容,讲师是个传奇人物,对纯粹的计算理论感兴趣的朋友不要错过这门课程。

3. 加州理工学院的 The Caltech-JPL Summer School on Big Data Analytics

本课不同于一般的课程,由一系列的讲座组成,讲述了数据分析领域的一些常用概念,属于比较偏向实务的课程。本课没有限制时间,也没有作业和证书。

4. 普林斯顿大学的 Algorithms, Part I

普林斯顿的数据结构是一门很有口碑的课程,本课的内容作为普林斯顿大学翻转课堂的材料,课程的内容和作业和该校校内基本一致。对于算法和数据结构感兴趣的朋友,这门课是非常不错的选择。唯一遗憾的是课程不提供证书。

5. 香港中文大学的 Information Theory

目前互联网上关于信息论的课程屈指可数,本课是为数不多系统讲授信息论的课程,感兴趣的朋友可以了解一下。

6. 台湾大学的 計算機程式設計 (Computer Programming)

这门课程是台湾大学计算机专业的基础课程,在台大拥有很好的口碑。课程用C语言教授,内容和国内大部分学校同类课程相似,初学计算机编程的同学不要错过这门华语课程。

7. 佐治亚理工学院的 Computational Investing, Part I

本课讲授基础的量化投资概念,属于比较偏向实务的课程。课程内容本身其实没有难度,面向有一定编程基础的同学。

8. 北京大学的 Introduction to Computing 计算概论A

来自北京大学的计算概论是又一门关于计算机基础理论的课程,适合对计算机编程感兴趣的同学作为入门课程。

9. 莱斯大学的 An Introduction to Interactive Programming in Python

又是一门关于计算概论的课程,本课通过一步步制作一款小游戏的方式,逐步介绍编程的基本概念。本课在世界范围内获得了极高的评价,不同于国内计算导论的课程,本课使用容易上手的Python语言,相信对于初学编程的同学来说这门课程将是非常棒的选择。

10. UCSD的 Bioinformatics Algorithms (Part 1)

这是一门关于生物信息学的课程,不需要生物学的背景知识,如果之前修习过算法的同学会觉得这门课程非常亲切。该课属于算法在生物学中的应用,通过本课可以提升自己的编程技巧。

11. EPFL的 Functional Programming Principles in Scala

EPFL的这门课程之前已经在Coursera上开设多轮,也是很多人初次接触Scala甚至是函数式编程的启蒙课程。课程的讲师是Scala的发明人,经典的课程再次启程。

12. 马里兰大学的 Usable Security

本课是马里兰大学在Coursera上开设的“Cybersecurity”系列的第一门课程,主要讲述从产品角度如何涉及一个安全的软件和系统。对安全领域感兴趣的朋友不要错过这门课程。

13. 北京大学的 操作系统与虚拟化安全

来自北大的操作系统课程,对操作系统以及安全领域感兴趣的朋友可以关注一下这门课程。

14. 斯坦福大学的 Machine Learning

虽然本课的讲师Andrew Ng已经离开Coursera加入百度,成为百度首席科学家,但是他给世界上对机器学习感兴趣的人留下的财富至今延续。经典的课程无需多做解释。

15. 台湾大学的 機器學習基石 (Machine Learning Foundations)

原汁原味的机器学习课程,在Coursera上的本课与台湾大学的线下课程同步。有一定难度,但如果坚持学习下来将会受益匪浅。

16. 斯坦福大学的 Mining Massive Datasets

据说该课原来属于斯坦福大学的收费在线课程,如今搬到了Coursera上免费提供给全世界。本课讲授了大数据技术的方方面面,对于数据分析感兴趣的朋友一定不要错过这门课程。

edX:
1. 清华大学的 电路原理 (开课时间:9.15)

本课是首批华语MOOC课程之一,一经上线便好评如潮。目前互联网上已经有数门关于电路原理的课程,包括MIT的6.002X。本课拥有与6.002X相媲美的质量,是国内大学生学习电路原理的不二选择。

2. 清华大学的 数据结构 (开课时间:9.16)

清华大学的数据结构一经上线便受到了一致的好评,课程内容接近清华校内线下课程的难度,推荐给渴望接触到国内最高学府知识的同学。

3. 比利时UCL大学的 Paradigms of Computer Programming – Fundamentals (开课时间:9.22)

这是一门关于编程范式的课程,对于日后期望从事软件开发或者在职工程师而言,这门课程能够为日后的开发生涯打下扎实的基本功。

4. 香港科技大学的 A System View of Communications: From Signals to Packets (Part 1) (开课时间:9.23)

本课是香港科技大学电气工程专业(EE)的第一门专业基础课程,对电子通信感兴趣的朋友不要错过这门课程。

5. 加州理工学院的 Learning From Data (开课时间:9.25)

本课的讲师和台湾大学机器学习课程的林轩田老师有很深的渊源,前者是后者的导师。本课制作精良,内容有深度,与台大的机器学习有相当的重合度。

6. 北京大学的 魅力机器人 | The Fascinating World of Robots and Robotics (开课时间:9.30)

来自北京大学的机器人课程,对机器人领域感兴趣的朋友可以关注一下这门课程。

2014年4月份MOOC部分热门课程汇总

近期MOOC的内容呈现出爆炸式的增长,各式各样的课程让人应接不暇。本文将对各大平台4月份预计比较热门的课程进行简单的汇总,各位可以根据自身的需求挑选合适的课程。

Coursera平台:

1. 美国西北大学的Everything is the Same: Modeling Engineered Systems 将于4月6日开课。本课主要讲述一些简单的物理工程实例,对物理学、工程学感兴趣的朋友可以关注。同时这门课程中会穿插Matlab和Python的内容,适合懂得一点编程的朋友。

2.马里兰大学的Exploring Quantum Physics将于4月7日开课,本课讲述的是量子物理。目前讲述量子物理方面的课程还不多,这门课或许是个不错的选择

3. 约翰霍普金斯大学的Getting and Cleaning Data将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分

4.约翰霍普金斯大学的R Programming将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分,R语言日益成为数据分析领域的首选工具,本门课程可以作为对这个工具入手的入门课程。

5. 约翰霍普金斯大学的The Data Scientist’s Toolbox将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分,主要介绍了目前数据分析中会经常用到的工具,例如:Github,  MarkDown, R Console, R Studio等等

6. 上海交通大学的“唐诗宋词人文解读”将于4月8日开课。课程从喜闻乐见的唐诗宋词入手,触摸一段历史与一群文人的体温,领悟人生旅途的趣味和智慧。

7. 上海交通大学的“媒介批评:理论与方法”将于4月8日开课。“媒介批评”是现代大众传播学的重要分支,简单而言,就是批评媒介,是 对大众传播媒介本身进行批评,属于应用传播学的研究领域。

8. 密歇根大学的Programming for Everybody将于4月10日开课。在众多编程基础课中这门课属于新的成员,适合编程零基础的朋友。

9. 慕尼黑大学的Competitive Strategy将于4月11日开课:

@ototsuyume:

其实就是简单易懂的博弈论入门,课程量少老师讲得作业难度不高而且每道题都有说明,大概是大学里面公共通选课的难度,有空可以看看

10.科罗拉多大学博尔德分校的Physics 1 for Physical Science Majors将于4月14日开课。本课属于比较传统的大学物理,之前获得了不错的反响

11.慕尼黑大学的Introduction to Mathematical Philosophy将于4月14日开课。在现代的哲学研究中越来越多的需要思考很多底层的问题,在这期间免不了需要思考很多数学层面的问题,本课推荐给对数学或哲学领域感兴趣的朋友。

12.匹兹堡大学的Warhol将于4月21日开课。出生于匹兹堡市的Andy Warhol是20世纪最伟大的艺术家之一,波普艺术的创始人,对当代的艺术和文化产生了巨大的影响。本课将介绍Andy Warhol的生平和作品,让大家一睹大师的风采。

13.香港中文大学的“中國人文經典導讀”将于4月24日开课。本課程是以四堂演講的方式,分別討論中國文化的四個主要面向,彙文學、歷史、哲學、藝術于一爐。每一個主題以一篇或兩篇經典文本爲基礎,指導學生如何精讀作品,學習以欣賞和批判的雙重角度重新解讀經典,同時獲得對中國文字的陶冶和享受。它本爲大學一年級學生所設,但不限於中文系本科專業,希能為學生鑒賞中國傳統文化開啟新的視野。

14.瑞士洛桑联邦理工学院(EPFL)的Functional Programming Principles in Scala将于4月25日开课。本课之前几轮获得了极高的评价,主要通过Scala语言讲述函数式编程的思想。本课的讲师正是Scala语言的发明人。

15. 斯坦福大学的Algorithms: Design and Analysis, Part 1将于4月29日开课:

@超級現實的超現實理想主義者:

这门课对我的影响非常大,直接改变了我的思维方式,并且为日后的学习打下了很好的基础。

edX平台

1. MIT的Street-Fighting Math将于4月8日开课。如同街头打架一样,不论你使用什么招式,打架的唯一目的就是寻求胜利。各位接受了多年“严谨”的数学教育,不妨感受一下“Quick and Dirty”的数学方法。

2.哈佛大学的Justice将于4月8日开课。这门“公正”课早在MOOC出现之前就已经红遍国内互联网,想要重温或者学习这门经典课程的朋友不妨关注一下这门MOOC形式呈现的课程。

3.京都大学的The Chemistry of Life将于4月10日开课。该课属于化学和生物的入门课程。

学堂在线:

1. 清华大学的组合数学将于4月10日开课。随着计算机科学的发展,组合数学在这段时间里获得了极大的发展。不同于传统数学领域侧重于“连续”层面,组合数学解决的是“离散”层面的问题。本课将从基础的排列组合开始,逐步深入了解计数问题的不同解决思路,通过对现实生活中计数问题的演绎和学生们共同体会组合计数问题不断抽象深入的挖掘过程,引导学生共同感受数学知识的精妙,从而深入理解组合数学对计算机理论发展的推动作用。

2. 加州大学伯克利分校的云计算与软件工程—第一部分将于4月21日开课。本课的讲师是软件工程和计算机科学领域的大牛,课程主要通过Ruby on Rails等目前热门的互联网开发技术阐述诸如“云计算”、“敏捷开发”等软件工程领域热门的主题。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接: http://blog.coursegraph.com/2014年4月份mooc部分热门课程汇总

计算机网络与信息安全公开课汇总

鉴于近期与计算机网络和信息安全方面有关的新闻层出不穷,课程图谱为各位汇总了目前(2014年初)MOOC平台与相关领域有关的公开课程。
计算机网络

1. University of Washington的Computer Networks

@wzyer:这门课是现今所有mooc平台上最全面的一门介绍计算机网络的课程。课程以网络的OSI七层模型为主线,全面覆盖了支撑现有互联网的各种基础架构和协议。其中又有重点地讲解了 TCP/IP,HTTP,802.11等常用基础协议,目的是使所有上完课的同学,都能够对于数字信号如何在网络上传播有一个清晰的认识。就我自己上完课的感受来说,这门课完全能够完成这个任务。
不过,如果从讲解和交互性上来说,这门课还是难以与一些精品课程相媲美,只能算是一般水平。老师对于各个问题的讲解基本遵循了“提出问题-》解决方案-》应用实例”的顺序,所举的小例子也足够简单清晰,所以不会出现难于理解的情况。但是从交互性和趣味性上说,有意思的讲解不多,也没有什么特点突出的、有趣的内容来让人加深理解。因此上课的时候常常让人觉得乏味。个人认为这一点以后还有很大的改善空间。
其实说这门课程很无趣也并不准确。整个课程里还是时常会有有趣的事情发生,比如空中飞来飞去的小花盆,比如在老师背后扮鬼脸的吃货小萝莉。好吧……也许有人会喜欢这个。不过这个确实……确实和主题关系不大。只这能算是为课程增添一点有趣的小插曲。
这门课的作业分为两个部分,一部分是选择填空题,这部分的分数和最后的证书密切相关;另一部分则是编程和一些网络工具的使用,这个不计分,只是帮助加深理解。由于时间关系,我上课的时候并没有完成第二部分。但我仍然强烈建议想认真学习这门课程的同学去完成编程以及网络工具使用这一部分。虽然这里不算分,但对于课程内容的理解是大有裨益的。
最后该说说老师了,David Wetherall 是计算机网络方面的专家。也是著名的计算机网络教材:Computer Networks的作者之一。这本教材在Amazon上评分是3.9分,要高于著名的SICP,当然和一些大牛的接近5分的经典巨著没法比,不过也绝对够得上好书的标准了。而且他作为老师所讲授过的课程全部是计算机网络相关的,可谓相当专一。因此,完全不用怀疑老师的专业性。
最后,我把这门课推荐给想了解计算机网络的相关知识的同学,也许它算不上很深入,但绝对能为你以后的深入学习打下坚实的基础。

@超級現實的超現實理想主義者:内容覆盖非常全面的一门课,可以看出老师的用心。不过正如@wzyer 所说的:“提出问题-》解决方案-》应用实例” 的授课方式,这门课还是显得比较传统,虽然老师的授课水平不用质疑,但是交互体验还是有点欠缺,毕竟计算机网络是一门偏重工程的课程,如果在Link Layer以上的部分能够将一些概念通过现实中的工具进行演示效果可能会更好一点。可能老师也发现了这个问题,于是大家就看到了老师和他的家人为此作出的努力(看过视频大家就知道我在说什么了,哈哈)

2. Stanford University的Networking: Introduction to Computer Networking:该课与上面华盛顿大学的课程内容基本类似,讲师分别是Philip Levis和Nick McKeown,其中Nick McKeown在计算机网络领域享有很高的盛名。

3. Georgia Tech的Software Defined Networking:该课讲述的是目前比较热门的领域:软件定义网络(Software Defined Networking),讲师Nick Feamster是该领域非常权威的人物。

4. Princeton University的Networks: Friends, Money, and Bytes:该课通过20个问题来讲述互联网如何渗透日常经济生活的方方面面,例如:Google是如何为网页进行排序,移动电话网络的运行规律,Netflix如何为用户推荐影片等等。该课的同名教材Networks: Friends, Money, and Bytes在美国亚马逊上也获得了很高的评价。

5. Princeton University的Networks Illustrated: Principles without Calculus:课程内容类似上面的Networks: Friends, Money, and Bytes,不过课程内容少了很多数学理论,适合数学基础薄弱的朋友。

6. University of Michigan的Internet History, Technology, and Security:该课介绍了与互联网有关的历史,例如因特网的诞生,万维网的历史,互联网传输协议等等,是一门科普性质的互联网历史课。

信息安全

1. Udacity的Applied Cryptography

@wzyer:我很喜欢这门课。能把这样一个偏数学的主题讲的这么有趣本身就很难得,编程作业更是吸引人。记得讲RSA的单元的作业是破解十多段密文,每一段解密后的明文都是下一段的线索,环环相扣,很有意思。而且这门课难度也不低,想完全掌握还是需要很多思考的。

2. Stanford University的Cryptography I 该课已经进行过多轮:

@Candy的爸爸:Stanford的密码学线上课程,主讲Dan Boneh非常给力,语速很快,是密码学界的大牛。每周的课程内容很多,主要讲了密码学的原理,包括流密码、对称密码、非对称密码,加密认证、完整性算法等。课程内容很值得推荐。我花了非常多的时间来学这门课

3. Stanford University的Cryptography II:该课距公布至今已经一年多,经历过数次推迟。从官方的信息来看预计即将开课,究竟会不会再次推迟让我们拭目以待。

4. Stanford University的Computer Security:该课与Cryptography I&II是同一个讲师Dan Boneh,该课的内容围绕与计算机安全有关的话题。目前还不清楚开课时间。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接: http://blog.coursegraph.com/计算机网络与信息安全公开课汇总

数据分析公开课汇总

数据分析是如今非常热门的话题之一,课程图谱为此简单整理一下目前(2014年初)在MOOC平台上有关数据挖掘方面的公开课程。
Coursera

1.  Johns Hopkins University的Data Analysis 该课通过R语言讲授数据分析的技巧:

@Cloga在路上:很好的一门课程,用R为工具讲了数据分析挖掘的一些算法和实例。

2. University of Washington的Computational Methods for Data Analysis 该课为课堂录像,通过MOOC的形式进行组织,讲师Nathan Kutz讲课生动、幽默,但是该课不足之处是课程不提供证书激励且几乎没有课程工作人员参与讨论,属于自助性质的课程。

3. University of Washington的Scientific Computing:科学计算是很多工程应用领域的基础课程,该课的讲师同样为Nathan Kutz,课程形式与上一门Computational Methods for Data Analysis基本一致。

4. University of Toronto的Statistics: Making Sense of Data

@Mavlarn008:就像这门课的标题“making sense”一样,这门课最好的地方就是让你对统计有”感觉”。虽然讲的比较简单,但是对于理解这些概念非常有用。 最后那个大胡子还自弹自唱一首他自创的有关这门课的歌,也很有意思。

5. University of Washington的Introduction to Data Science

@Cloga在路上:很好的一门课,尤其对于我这种初学者,老师讲的面很广,涉及了数据科学的很多方面。
不足之处是课程内容过多有些内容讲的很匆忙,比如数据可视化这个部分,大家普遍反馈讲的有点水,Graph那部分也有点水。
比较好玩的是,课程结束后Bill好像有些事情,拖了一段时间才给出分数,大家在课程论坛上各种吐槽,无比欢乐。

@伟伟酱说:正如老师开始所讲的,这门课的目的只是让你成为advanced beginer,课程内容涵盖了数据库(SQL,NoSQL),MapReduce,基本的数值分析,机器学习,数据可视化。类似于另外一门课Web intelligence and big data,两者都应该算是入门型课程,学生想要深入学习的话可以选择其他专门的课程。
有人认为老师讲课枯燥,你总不能指望每个老师把数学课讲的有历史课那么有趣吧~

@钛合金蛙眼: 希望和失望并存。。。课程内容结构很好,讲的不好;作业很赞,对有一定基础的人不难,但入门的同学可能还是有困难。如果只是想粗浅了解课程各个topic的,跟着做作业就不错,想深入还需自学

6. Columbia University的Big Data in Education:该课讨论的是将数据分析的技巧运用于教育领域

7. Johns Hopkins University的Computing for Data Analysis

@宋鑫要学习:想入门R语言的可以听听。我自己之前有看过一些R的入门书籍,但是总感觉云里雾里,这门课让我感觉自己摸着点门道

@Puriney:这门课更确切说确实是R语言指南,很多实用并且系统地把R用法娓娓道来,没有啥算法,因此可能有人觉得不象一门综合大学的课程而更象蓝翔技校般的技能课。我想跟当时课程开课有一定关系,当时我记得是这门4周课时的课(很精简了)先开(Roger Peng主讲),结束之后马上接着便是Roger Peng的好基友Jeff Leek (他们都是http://simplystatistics.org/博客的共同博主)讲的Data Analysis。Jeff的这门课就更加复杂,作业里有更多计算成分在,就不那么“技校”了。 p.s. 这是我唯一一门上完不那么费脑力的课(相比那些算法的课)。Jeff的这门我没有坚持到底,当时我很讨厌“互相批改”的评分制度(如果没记错)

@要有光LTBL:R讲的挺好的,一直在用但是知识体系并不是很系统。这门课还是讲得不错的。。。

@wzyer:这门课就应该叫作R使用手册。全是R的语法与应用,有些让我失望。语法什么的太琐碎,很容易遗忘,放到课上讲太多语法个人以为不妥。

 

8. Stanford University的StatLearning: Statistical Learning:名著The Elements of Statistical Learning: Data Mining, Inference, and Prediction(ESL)的作者Trevor Hastie和Rob Tibshirani开设的课程,本课的配套教材An Introduction to Statistical Learning: with Applications in R在美国亚马逊上获得了极高的评价,在课程中该教材将会免费对外开放

9.Duke University的Data Analysis and Statistical Inference:该课将会由R语言讲授统计学和数据分析方面的内容,欢迎关注

Udacity
Udacity近期与企业界合作推出了一些数据分析领域的课程,课程内容本身对外公开免费,但如果需要获得证书以及专门的在线辅导的话则需要支付一定的费用。
1. Introduction to Hadoop and MapReduce:

@ziyoudefeng: 这门课程太简单了,google搜索 mapreduce PPT 出来的这些PPT,看上几个也都抵上这三节课了。不过,总共也就3节课,听听也无妨。讲的内容很初级,小白用户可以网上的讲义加视频一起学习!

2. Introduction to Data Science

3. Data Wrangling with MongoDB

4. Exploratory Data Analysis

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接:http://blog.coursegraph.com/数据分析公开课汇总

经济学/金融学公开课盘点

之前有朋友在课程图谱的QQ群里(群号:244689946)询问过是否能够对经济学/金融领域的公开课课程进行一次汇总。在进行了相关资料的收集和整理以后,课程图谱将目前MOOC平台上有关经济/金融方面的课程进行简单的整理。鉴于目前有大量的相关课程,本篇挑选了比较重要的一些进行罗列,希望能够给大家一个比较完整纲领.

经济学领域

微观经济学

1. 宾夕法尼亚大学的Principles of Microeconomics

2.UCIrvine的The Power of Microeconomics: Economic Principles in the Real World

3.伊利诺伊大学香槟分校的Microeconomics Principles

@ototsuyume:总的来说这门微观经济学是不错的课程,即使只完成quiz也能拿到证书。假如时间多又想锻炼一下英语的话也可以去做project,每个project都完成了后据说证书上有特殊的标识。不过这门课没有ppt,老师提倡的做法是反复观看你不懂的那部分的视频,看到懂为止,这就是mooc的好处,问题在于对于时间不多的人来说,这是十分花费时间的过程

以上几门都是比较传统的微观经济学课程,主要都介绍了“供给-需求”,“资源分配”,“竞争”等等比较经典的微观经济学概念,各位可以根据自己的情况选择一门进行学习。

4.斯坦福大学的Game Theory

@wzyer:我只上过这个课的第一轮,不得不说,不算是一个太好的体验。总体课程显得内容很多,进度很快。不过据说后面开课做了很大优化,我就不清楚了。

社会网络属于一门数学、计算机、经济学、社会学的交叉学科,鉴于微观经济学的重点在于讲授经济学领域的工具,所以将有关社会网络的课程暂时列入微观经济学领域:

5.宾夕法尼亚大学的Networked Life

6.密歇根大学的Social Network Analysis

@MrDeadline:拿到了证书。这门课难度不是很大,每周的homework都是选择题且可以多次尝试得到满分,编程作业只有四次,偏简单。Lada介绍了很多概念,但都仅涉及初级部分,作为入门了解课程挺不错。编程作业虽然很少,但是用到了不同的SNA工具,特别是Gephi可视化工具的大量使用,我觉得可以激发很多学生继续学习这个领域的兴趣。

7.北京大学的人群与网络 People & Networks

8. 康乃尔大学的Networks, Crowds and Markets:其中两位讲师Jon Kleinberg和Eva Tardos是经典教材Algorithm Design的合作者

宏观经济学:

1.墨尔本大学的Principles of Macroeconomics

2. UCIrvine的The Power of Macroeconomics: Economic Principles in the Real World

3.威斯康星大学的Markets with Frictions

宏观经济学从某种角度上说属于微观经济学的进阶,通过从微观经济学学到的工具来分析和解决现实社会中比较宏观层面的问题

计量经济学/数学:

1. 加州理工的Principles of Economics with Calculus:据称该门课程的内容和难度与加州理工本校的课程完全一致,将有很大一块比重在数学模型上。需要一定的数学基础

2. 华盛顿大学的Mathematical Methods for Quantitative Finance

@钛合金蛙眼 :内容包括微积分,线性代数,最优化再捎带一些金融知识,都是数据挖掘和机器学习数学基础(除了概率统计),老师也讲的很清楚,只可惜没有证书,UW开的几门课程都不错

3. 华盛顿大学的Introduction to Computational Finance and Financial Econometrics

@要有光LTBL:前几周难度略低,从第7周左右才真正开始讲有趣的,前面还是概率统计什么的为主。作业基本上属于太简单(当然这是本科课)。。。R的覆盖还是不错的,视频虽然是课上录的但是质量还可以,不过不能下载视频和没有statement of accomplishment是挺讨厌的。

对于数学基础比较薄弱的朋友,课程图谱博客整理了数学方面的公开课方便各位根据自己的需求进行选择:http://blog.coursegraph.com/数学基础公开课汇总

金融学领域

投资学与资产定价:

1.密歇根大学的Introduction to Finance:该课属于Coursera在中国最受欢迎的课程之一,覆盖了股票、债券,以及资产定价的基础知识,属于不错的入门选择

@Exolution:我之后再听沃顿商学院Franklin Allen教授的Introduction to Coporate Finance的课程时,觉得非常流畅顺利,相信除了因为沃顿的课程本身品质不错外,之前Gautam Kaul教授的这门课还是起了很大帮助的。尽管内容不够紧凑丰富,但是对于新人来说这门课还是不错的金融入门课。 (点击查看完整评论..)

@ototsuyume:这门课跟ng的机器学习貌似是coursera最热门的三门课之一,内容很基础,连期货期权这些都没涉及到。但是作业有点难度,主要是老师上课的讲的例子太少也很简单。给的资料不是很多,课后作业的题解也只给了一道题目的讲解。要是给的资料啊题解什么的多一些就好了

2. 芝加哥大学的Asset Pricing:芝加哥大学是经济学和金融领域的重镇,该门课程属于PHD级别的课程,据称有相当的难度。对于有一定基础的朋友可以尝试一下。

3. 佐治亚理工的Computational Investing, Part I:该门课程适合计算机领域背景的朋友,希望能够了解一些金融学知识和金融交易方面的技巧。

货币银行学:
1. 耶鲁大学的Financial Markets:该课的讲师Bob Shiller获得了2013年的诺贝尔经济学奖。重量级的人物请自授课,千万不要错过

2. 哥伦比亚大学的Economics of Money and Banking, Part One

3. 哥伦比亚大学的Economics of Money and Banking, Part Two

金融工程和风险管理:

1. 哥伦比亚大学的Financial Engineering and Risk Management Part I

2. 哥伦比亚大学的Financial Engineering and Risk Management Part II

该领域主要是通过介绍和分析金融衍生品例如期权、互换等工具来进行盈利和风险对冲

财务:

1. 沃顿商学院的An Introduction to Financial Accounting:

@范昊坤:1. 课程完全为网络学习设计,视频精心制作,PPT课件和案例详尽。对于有那么一点聊胜于无的底子的我来说(十几年前学过一点基础的会计,基本了解资产负债表和借贷平衡,更多的就早已经还给老师了),难度应该正好,内容深入浅出。如果是完全没有接触过会计的童鞋,在最初两周的学习过程中可能会略微吃力一点,但是应该很快就能和我的基础齐平了。不过即便如此,后几周的课程还是略有点难度的,做作业的时候经常需要翻笔记,考试时如果不能对会计有大概的融会贯通的话,想拿高分或者满分还是略有难度的,所以切不可掉以轻心。(点击查看完整评论…)

@超級現實的超現實理想主義者: 能把会计这么无聊的一门课讲到这种程度确实不容易,讲师Brian Bushee在最后告别视频里说,大意就是:之前会计师协会的人对他说MOOC虽然很火,但是这把火是烧不到会计这门课,他想用实际行动证明他们错了。
我觉得他做到了,向他致敬!(点击查看完整评论…)

2. 清华大学的财务分析与决策:该课一上线就受到了广泛的好评

3. 沃顿商学院的Corporate Finance:

@范昊坤:作为沃顿四门MBA入门课程之一的这门课可圈可点,待俺慢慢八来。
1. Dr. Allen是学界牛人,教科书Principles of Corporate Finance的合著者之一。据童鞋们指出是一口地道的牛津腔。老师说话慢条斯理,灰常柔和,声线可谓很有特色,对于我来说,听了几周以后,慢慢也就习惯了(点击查看完整评论…)

@Exolution: 课程内容安排的非常紧凑,虽然时间短但是相比Gautam Kaul教授的课程内容广度和讨论深度都胜一筹。不过,Franklin Allen教授这门课上,假设公司只通过发行股票筹集资金,所以不存在根据负债比例调整股票期望收益率的问题,WACC模型自然没出场的份了,这部分内容得去Gautam Kaul教授课上补。此外,这门课可以不看听课,但是Notes必须得研究。Notes写的很详细,而视频上就比较粗的过一遍,然后针对课上学生提问的地方稍微详细的讲解一下。所以这门课如果不研究Notes,只看视频的话,恐怕会很难理解的。而且Franklin Allen教授第一节课也明确要求了需要读Notes,不读的话听不懂课可不能抱怨课讲得不好哦(点击查看完整评论…)

行为金融学:

1. 杜克大学的A Beginner’s Guide to Irrational Behavior:该课虽然属于心理学领域,但是对于了解行为经济学(金融学)会有很大的帮助和指导意义

@点儿618: 这是我上过的最好的课程,没有之一。从这门课的制作可以看出,大名鼎鼎的《怪诞行为学》作者Dan Ariely的成功真的不是偶然。和其他课程比起来,他是经过精心准备的,每一个视频、课程结构都是经过精心设计的。并不是在办公室或者家里拿个摄像头随便一录。他尽量用图片的语言帮助你理解,即使英文不够好,借助字母和他的图片,也能明白大意。他还在每周课程一开始讲一个笑话。有完备的reading list,分为必读和选读。每周有office hour。还请了其他心理学家客串讲座。
总之,整个课程的制作都非常用心,水平很高。内容又不是任何一本教材,而是非常贴近生活的行为经济学。
可以轻松愉快地学到这些有用的东西。
上完了这个课,Dan完全替代了前任,成为了这阶段我最喜爱的心理学家。

 

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接:http://blog.coursegraph.com/经济学金融学公开课盘点

 

 

 

2014年一月份开设课程汇总

2013年,MOOC开始进入人们的视野,2014年将是MOOC正式全面爆发的一年。

2014年一月已经确定会有多门课程即将开设,鉴于内容之多已经可以用“狂轰滥炸”来形容,课程图谱为大家进行简单的梳理,大家根据自己的需要挑选心仪的课程吧

介绍的重点主要还是以计算机科学和数学相关的课程为主:

Coursera平台

1.  斯坦福大学的 Cryptography i ,开课时间:1月6日

这门课程在 Coursera 上开课次数非常高,据说现在已经开到第9轮:

@ffffffoouddddd: 过几天要开始新的一轮了,感觉完成还没多久。不过之前都没做编程题,这次得把编程题做了。这门课理论性很强,到后面基本上都没有 in-video quiz 了。这门课是分类在 CS: Theory 下的。期末考试有点难,因为和之前的作业很不一样。

@Candy的爸爸: Stanford的密码学线上课程,主讲Dan Boneh非常给力,语速很快,是密码学界的大牛。每周的课程内容很多,主要讲了密码学的原理,包括流密码、对称密码、非对称密码,加密认证、完整性算法等。课程内容很值得推荐。我花了非常多的时间来学这门课。准备上7月份的Cryptography II。(注:Cryptography II其实已经跳票多次了,虽然官网上已经确定明年春季会开,不过是否还会跳票至今还是未知)

2. 伊利诺伊大学香槟分校的 Heterogeneous Parallel Programming 开课时间:1月6日

@wzyer: 就是讲CUDA的,额……不知为啥听过几个亚洲人的课都觉得不够给力。这个课……还行吧,学到了CUDA的基础知识,几个编程作业也还不错。不过算不上精品。个人觉得学习CUDA还是Udacity上那个课比较好。
@yongsun: 对GPU编程的各种principles和best practices有不错的介绍,不过老师讲的不是很流畅,PA的环境(特别是评分系统)也颇受诟病,希望后期有更好的改进…

3. 香港中文大学的Information Theory 开课时间:1月6日

信息论的运用相当广泛,在通信以及密码学领域都有实际运用,对于有一定数学基础的朋友可以关注。

4.巴黎中央理工学院的Discrete Inference and Learning in Artificial Vision 开课时间:1月10日

这门课的讲师Nikos Paragios是这个领域的知名专家,感兴趣的朋友可以关注

5. 华盛顿大学的Computational Neuroscience 开课时间:1月10日
该门课程的讲师Rajesh P. N. Rao还因为成功将大脑与电脑链接而成为一时的新闻话题(新闻链接:华盛顿大学成功实现人脑至人脑信号传输

@要有光LTBL: 印度老师很幽默,女老师有点像冷血女杀手酷酷的感觉。。。
讲得很细致,尤其指出了现有神经网络模型和人脑之间的一些区别,我觉得在这方面改进可能是未来的发展方向?
我还是很喜欢这个领域的。另外发现UWashington的几门CS课质量都相当高啊。。。

6.宾夕法尼亚大学的Calculus: Single Variable 开课时间:1月10日
该课曾在2013年年初通过美国官方ACE认证,成为承认学分的课程

@基佬的愛__:这门课讲数列和级数,相同的内容 Robert Ghrist 的 Calculus: Single Variable 也涉及到了。Jim 讲的要比 Robert 要细致,比如一些数列和级数的收敛性的测试定理,Jim 会花一整个 lecture 讲推导过程, Robert 讲的没那么详细。另外整门课我最喜欢的一个 lecture 是关于 Taylor series 那节,Taylor Series 的 motivation 就是 approximation ,实际上他是 linear approximation 的推广,对某个函数在某点做 Taylor expansion 实现上就是找一个函数,使他在该点的值和原函数相等,并且该点的每一阶导数也和原函数的每一阶导数相等,导数反映的是函数的变化情况,这样我们就找到了一个和原函数在某个区间内相同的函数,说在某个区间内是因为有一个收敛性的问题。我可能记不住 Taylor series 的公式,不过我已经随时能把 Taylor series 推导出来了。还有个很有意思的 lecture,为了说明 geometric series 的收敛性,Jim 举了个造桥的问题,用质量均匀分布、形状相同的长木条造桥,最多能造多远?答案是理想状况下,想多远就多远。只要我们把每一块木条放在下一堆木条的重心处就能保证它不倒,然后你会发现每次增加的长度加起来正好构成一个不收敛的级数,Jim 自己造了这么一座很壮观的桥,你能看到这门课课程介绍的图片就是这样一座桥,实际上 lecture 里 Jim 造的那座还要壮观,比课程介绍里的那座要更长。总体来说这门课内容不多、难度不大、(不过我之前已经上过 Robert 的课,并且自学过一些其他的数学)、占用的时间不多,我基本看完视频就马上能把作业完成,不过这门课还是很有启发性的,有很多有意思的东西,Jim 在课程讨论版里也是一如既往的 supportive。另外这门课也有一本配套的免费教材。

7.爱丁堡大学的Artificial Intelligence Planning 开课时间:1月13日

@wzyer: Planning嘛,看到题目就想到了A*。不过学过这门课了才发现实际应用中的算法还是很多的,除了状态空间搜索,还有策略空间搜索等等很多办法。这门课程的内容很多,视频量很大,我险些就放弃了。但是作业倒不多,作业和考试挺有挑战性的。

8. 杜克大学的Image and video processing: From Mars to Hollywood with a stop at the hospital 开课时间:1月20日
对通信和计算机视觉领域感兴趣的朋友可以关注

@freealbert:这门课定位应该是图像处理的入门课程, 内容很全面也很鲜活,从灰度,像素等的最基础的知识一直讲到如今在学术界大红大紫的稀疏表示。Slide和Demo演示都很赞,相信应该能激起很多人对图像处理的兴趣,K-SVD算法就是在他的课上搞明白的。 关于授课老师, Sapiro本人是图像处理的大牛, 光在IEEE上就有文章150余篇, 在PDE和小波方面都有很大的贡献.

9. 莱斯大学的Fundamentals of Electrical Engineering 开课时间:1月20日

@wzyer:课程本身还不错,教授满头白发也很让人尊敬。不过,内流满面的说,他讲的太快了……一门导论课,他从电路基础讲到通信技术,内容很多,速度很快,想深入理解的话课下还得花不少时间……我就那么囫囵吞枣的过了。作业和考试评分系统也经常有点bug啥的。

10. 马里兰大学的Programming Mobile Applications for Android Handheld Systems 开课时间:1月21日
该门课程是Coursera平台上第二门有关Android开发的课程,对移动App开发感兴趣的朋友可以关注一下这门课程

11. 普林斯顿大学的Algorithms, Part I 开课时间:1月23日
数据结构大师Sedgewick的名著Algorithm 4th的配套课程,对于希望能够锻炼扎实数据结构基本功的朋友不要错过这门课程

@培翔-_-:lectures本身4分差不多了 算深入浅出 但是assignment必须5分+
各种内存、性能优化 爽到爆
@wzyer:很好的课程!老师充分展示了名家风范。内容系统,结构紧凑。示例代码简洁清晰。更难得的是作业题目非常有意义,评分脚本很完善。是我上过的课中作业部分最好的了。
@ecluzhang: 这门课分上下两部分。6周跟完了,这个上部分是一个非常浅显易懂的算法入门,基本功方面非常清晰。
前面介绍完算法及分析方法之后,后面每个算法都用思路+动态demo+代码片段+复杂度分析的方式。
值得一提的是代码片段,虽然是java描述但也很简洁,视频里则多了一些java相关的东西(比如assert是什么啊、java有哪些接口会在代码段里用到啊),估计是出于入门的定位。但对于不用java编程的来说就显得有些多余。

12.华盛顿大学的Computer Networks 开课时间:1月24日

@wzyer: 这门课是现今所有mooc平台上最全面的一门介绍计算机网络的课程。课程以网络的OSI七层模型为主线,全面覆盖了支撑现有互联网的各种基础架构和协议。其中又有重点地讲解了 TCP/IP,HTTP,802.11等常用基础协议,目的是使所有上完课的同学,都能够对于数字信号如何在网络上传播有一个清晰的认识。就我自己上完课的感受来说,这门课完全能够完成这个任务。

不过,如果从讲解和交互性上来说,这门课还是难以与一些精品课程相媲美,只能算是一般水平。老师对于各个问题的讲解基本遵循了“提出问题-》解决方案-》应用实例”的顺序,所举的小例子也足够简单清晰,所以不会出现难于理解的情况。但是从交互性和趣味性上说,有意思的讲解不多,也没有什么特点突出的、有趣的内容来让人加深理解。因此上课的时候常常让人觉得乏味。个人认为这一点以后还有很大的改善空间。

其实说这门课程很无趣也并不准确。整个课程里还是时常会有有趣的事情发生,比如空中飞来飞去的小花盆,比如在老师背后扮鬼脸的吃货小萝莉。好吧……也许有人会喜欢这个。不过这个确实……确实和主题关系不大。只这能算是为课程增添一点有趣的小插曲。

这门课的作业分为两个部分,一部分是选择填空题,这部分的分数和最后的证书密切相关;另一部分则是编程和一些网络工具的使用,这个不计分,只是帮助加深理解。由于时间关系,我上课的时候并没有完成第二部分。但我仍然强烈建议想认真学习这门课程的同学去完成编程以及网络工具使用这一部分。虽然这里不算分,但对于课程内容的理解是大有裨益的。

最后该说说老师了,David Wetherall 是计算机网络方面的专家。也是著名的计算机网络教材:Computer Networks的作者之一。这本教材在Amazon上评分是3.9分,要高于著名的SICP,当然和一些大牛的接近5分的经典巨著没法比,不过也绝对够得上好书的标准了。而且他作为老师所讲授过的课程全部是计算机网络相关的,可谓相当专一。因此,完全不用怀疑老师的专业性。

最后,我把这门课推荐给想了解计算机网络的相关知识的同学,也许它算不上很深入,但绝对能为你以后的深入学习打下坚实的基础。

@超級現實的超現實理想主義者:内容覆盖非常全面的一门课,可以看出老师的用心。不过正如@wzyer 所说的:“提出问题-》解决方案-》应用实例” 的授课方式,这门课还是显得比较传统,虽然老师的授课水平不用质疑,但是交互体验还是有点欠缺,毕竟计算机网络是一门偏重工程的课程,如果在Link Layer以上的部分能够将一些概念通过现实中的工具进行演示效果可能会更好一点。可能老师也发现了这个问题,于是大家就看到了老师和他的家人为此作出的努力(看过视频大家就知道我在说什么了,哈哈)
另外值得称赞的是老师在课堂论坛社区里也很积极的与学员互动,常常能很快给出反馈

@要有光LTBL:讲的清楚明白,quiz什么的涉及的也挺合理,别的也没啥可说的。。。顺便我也没做编程作业= =

13. 巴黎中央理工学院的An Introduction to Functional Analysis 开课时间:1月27日
对泛函分析感兴趣的朋友不要错过了

OpenEdx平台
1.哈佛大学的Introduction to Computer Science 开课时间:1月1日

2. 斯坦福大学的Introduction to Databases 开课时间:1月7日

3. UTAustin的Linear Algebra – Foundations to Frontiers 开课时间:1月15日
对于线性代数感兴趣,希望通过编程动手理解的朋友们不要错过这门课程

4.斯坦福大学的StatLearning: Statistical Learning 开课时间:1月21日
统计机器学习,经典教材Elements of Statistical Learning 的作者亲自出马讲解,本课还会提供免费配套教材 An Introduction to Statistical Learning, with Applications in R 对统计学、机器学习感兴趣的朋友千万不要错过!

5.斯坦福大学的Convex Optimization 开课时间:1月21日
优化领域的大师Stephen Boyd亲自出马授课,千万不要错过!

Udacity平台
全世界第一个通过MOOC平台实现的硕士生项目OMSCS(Online Master of Science in Computer Science)将于明年一月正式开课,以下列出了1月将在该项目中开设的课程:
1. CS 6210, Advanced Operating Systems
2. CS 6250, Computer Networks
3. CS 6300, Software Development Process
4. CS 7641, Machine Learning
5. CS 8802, Artificial Intelligence for Robotics: Programming a Robotic Car
(详细信息:OMSCS:Program Information

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/2014年一月份开设课程汇总

数学基础公开课汇总

良好的基础是成功的一半。在如今这个时代,数学成为人们社会运行中不可缺少的组成部分,拥有良好的数学基础就等于为自己创造了更多可能,使得人们可以有足够的资本在这个变化繁杂的社会里来调转方向。

大学里有三门数学课是绝大部分专业的学生必修的,分别是:微积分、线性代数、概率统计。课程图谱本次就为这三门课罗列一下目前(2013年)几大MOOC平台收录的相关课程。

微积分公开课
1. 俄亥俄州立大学的Calculus One 是一门口碑非常不错的课程,讲师表情丰富、讲解投入,深得学员的欢迎:

@基佬的愛__ 同学评价“这门 Calculus One 内容比较基础,没有讲拓扑,没有涉及多变量函数,所有的讨论都是在 R 上进行的,差不多等于国内工科高数上的简化版。Jim Fowler 讲课很清楚,耐心很好,推导从来不跳步骤,很显然的步骤也写出来(其实我上过的所有的数学系教授教的 MOOC 的都是这样的),有时候我都有点不耐烦了,所以你跟着他上下来肯定能把这部分内容掌握好。我觉得学过一些函数的高中生甚至初中生就能听懂。印象中每周都会有一两个 lecture 是在室外进行实验。Jim 还提供了一本自己写的教材,教材写的要比他上课讲的严格一些,他上课讲的比较直观、稍欠严谨,可能是希望这门课的受众更广的原因,我建议看完 lecture 把对应的教材也看一遍就完美了。还有一个课程配套的网站 http://mooculus.osu.edu/ ,每周都有 exercises,从最 trivia 的到稍有难度的,总体来说都不是很难的题目,目的在于检查你是否理解了某个概念,不过因为很多都太 trivia 我都是挑着做的。 整个课程有 15 周,可能是最长的 MOOC 跟完很有成就感。Jim Fowler 是我上过的所有 MOOC 里上课最激情的一个讲师,属于表演型的老师,给人的感觉是他很享受整个教书的过程,很能带动学生。Jim 也是我上过的所有课中最愿意和学生互动的讲师,他几乎会回复每一个帖子,而且他不摆架子,允许我们叫它 Jim。Jim 说他在大学的一部分工作就是负责 MOOC,之后可能会开多变量微积分、拓扑、复分析、抽象代数等课程,明年3月会有一门他开的课程,目前还不知道是什么内容,我已经打算上所有 Jim Fowler 的课了。”

@ffffffoouddddd 同学评价“内容很简单,我估计比大学里面要学的微积分内容少70%。这位老师是很有激情的,拍摄视频时离镜头很近,有种身临其境的感觉,并且很有喜感(可能是因为他是光头)。观看视频时你总觉得他下一秒就要把你逗笑那种。而且他们也有一本他自己写的教材,很不错,有自己的俄亥俄州立大学的练习平台,我没怎么去练习因为太简单了。Coursera 上习题可以回答很多次,……”

2. 俄亥俄州立大学的Calculus Two: Sequences and Series 是前一门课程的后续:

@基佬的愛__ 同学评价 “这门课讲数列和级数,相同的内容 Robert Ghrist 的 Calculus: Single Variable 也涉及到了。Jim 讲的要比 Robert 要细致,比如一些数列和级数的收敛性的测试定理,Jim 会花一整个 lecture 讲推导过程, Robert 讲的没那么详细。另外整门课我最喜欢的一个 lecture 是关于 Taylor series 那节,Taylor Series 的 motivation 就是 approximation ,实际上他是 linear approximation 的推广,对某个函数在某点做 Taylor expansion 实现上就是找一个函数,使他在该点的值和原函数相等,并且该点的每一阶导数也和原函数的每一阶导数相等,导数反映的是函数的变化情况,这样我们就找到了一个和原函数在某个区间内相同的函数,说在某个区间内是因为有一个收敛性的问题。我可能记不住 Taylor series 的公式,不过我已经随时能把 Taylor series 推导出来了。还有个很有意思的 lecture,为了说明 geometric series 的收敛性,Jim 举了个造桥的问题,用质量均匀分布、形状相同的长木条造桥,最多能造多远?答案是理想状况下,想多远就多远。只要我们把每一块木条放在下一堆木条的重心处就能保证它不倒,然后你会发现每次增加的长度加起来正好构成一个不收敛的级数,Jim 自己造了这么一座很壮观的桥,你能看到这门课课程介绍的图片就是这样一座桥,实际上 lecture 里 Jim 造的那座还要壮观,比课程介绍里的那座要更长。总体来说这门课内容不多、难度不大、(不过我之前已经上过 Robert 的课,并且自学过一些其他的数学)、占用的时间不多,我基本看完视频就马上能把作业完成,不过这门课还是很有启发性的,有很多有意思的东西,Jim 在课程讨论版里也是一如既往的 supportive。另外这门课也有一本配套的免费教材。”

3. 宾夕法尼亚大学的Calculus: Single Variable 在今年年初获得了美国官方的认可,成为可以获得正式学分的在线课程

@基佬的愛__ 同学评价 “Robert Ghrist 这门课和 Jim Fowler 的 Calculus One 有重叠的部分,不过内容更深入,课程周期也挺长的。课程总共分五个部分,Functions,Differentiation,Integration,Applications(主要是积分的),Discretization(主要讲数列和级数)。积分的应用部分略有难度,讲的内容比我以前上的高数课讲的积分的应用要多 centroids 和 moments and gyrations 我是第一次学,第一部分的 Taylor series 我觉得没有 Jim Fowler 讲的好。这门课作业量挺大的,每周大概是五个 lecture(外加一亮个 bonus),每个 lecture 对应一个 core 和 一个 challenge 作业,core 一般10道左右,challenge 一般2-5道左右,我做了所有的 core 和一部分的 challenge 。作业是不计分的,某个单元会有一次 quiz,期末会有个 exam。另外,讲师是个 geek,他的 lecture 里很多彩蛋。”

@52nlp 评价 “Coursera在今年一月份同时推出了两门微积分课程,一门是这个单变量微积分,另一个是微积分上(Calculus One)。我同时跟了这两门课,不过由于工作及春节等等缘故,大概跟了一半就放弃了,不过还是可以点评一下。相对来说,这门课制作的课件非常有意思,但是Calculus One讲得更生动一些。

这门课程的一个参考书是不到50页的一个小册子:FLCT: the Funny Little Calculus Text ,这个在google book上能阅读免费电子版,google play 上也只有0.45美元的价格,课件的确很有趣并且动感实足,这样导致感觉老师讲得有点不生动了。不过总体来说,这门微积分入门课还是非常不错的。”

线性代数公开课
线性代数是一门非常实用的课程,但是国内绝大多数的同学在学习这门课程的时候并不能很好理解线性代数的重要性,究其原因可能是因为教学方式相对于现实运用的滞后性。目前国外MOOC平台的线性代数课程往往结合了计算机编程,通过动手解决问题来加深对于这门课程的理解。

1. 布朗大学的Coding the Matrix: Linear Algebra through Computer Science Applications 通过Python来解决现实中的实际问题,来帮助学生对于知识的理解。不过有趣的是,对于这门课程大家的反响不一:

@ototsuyume 同学评价“值得吐槽的很多:
1.老师讲课水平不咋样,课程内容也有问题,很多基本概念没有说清楚
2.作业量偏大,而且大部分是重复的计算,比如上上周作业是要实现matrix类各种运算,然后作业里面还要用另外的方法算matrix的乘法,不明白这样做的意义何在
3.课程介绍说这门课很偏向应用,但貌似基础概念讲不好应用讲得也很浅,从作业上没看到这点,你将线性变换好歹在作业里让学生拉长一张图片都比实现vector、matrix类要好吧
4.svd分解等内容因为课程长度问题不会讲,这门课的含金量进一步降低。
另外虽然吐槽的是这个老师主页上还写着拿过布朗大学的优秀讲师奖项的,从他讲课的方式来看我不明白这个奖到底是怎么评的…”

@大家都叫我瑞爷 同学评价“这门课不能算是一门入门课,尤其是不能视为线性代数入门课,因为关于数学部分的课程材料过于简略。此外,这门课还有编程作业较多的特点。因此此课比较适合:了解线代,但是不懂如何将线代应用到计算机上解决问题。我见过有人吐槽这门课线性代数教的太少了。所以想学线性代数的guys请移步到mit公开课网站直接修线性代数。”

2. UTAustin的Linear Algebra – Foundations to Frontiers 将于明年在Edx平台上开课,本课同样也是希望通过计算机编程来帮助学生理解线性代数的概念,让学生充分理解这门课的重要性。由于这门课尚未正式开课,质量究竟如何让我们拭目以待!

3. 最后隆重推荐网易公开课上收录的“麻省理工公开课:线性代数”:

这门课程虽然是老一代的公开课,但是讲得确实确实非常好,更详细的信息可参考这篇文章《线性代数的学习及相关资源》。

概率论公开课
生活中充满不确定性,如何更好地理解和面对这种不确定,正是概率和统计学所主要面对的议题。正因为如此,概率统计是适合每个人去学习的一门课程
1. 台湾大学的機率

@基佬的愛__ 同学评价 “这门课半途弃了。讲师是个 EE 背景的教授,虽然第一周第一个 lecture 叶老师明确说了这门课比较注重生活中的应用,还是有些小失望,如果叶老师选择自己更擅长的 EE 方便的课程可能会效果会更好。这门课不合我口味是因为太不严肃,推导少了点。课程前几周有一课里叶老师引入了一个事件域/空间(event field)的概念,我不记得他用的哪个名词了,反正他给出的定义是样本空间的幂集。事件域(event field)我用英文在 google 搜没有搜到这个概念,只有 wolfram 的 wiki 说它指的就是样本空间,和叶老师的定义不一样,用 baidu 搜发现国内的教材里确实有这个概念,定义也是和叶老师的课里一样的,但是叶老师引入这个概念后面的课里(至少在我上完的那几周里)没用到这个概念,那引入这个定义有什么意思,我受不了这种不严谨。另外叶老师喜欢在每周花一整节课的时间讲大道理让我非常反感,人之患在好为人师,客观的真理是可以教的,但是怎么做人就不太好教了,我觉得人不是从别人的建议里学到东西的,人是从自己的经验,犯过的错中学习的。对于叶老师不公布作业解答的做法也不太认同。叶老师也鲜有在论坛上回复同学数学上的问题,有个 TA 还是很认真的。值得肯定的是叶老师也是属于教学非常热情的讲师,不过他在课上用的梗很烂,没得到我的共鸣……我觉得他过于花心思在课上一些讨人欢喜的梗上而忽略了课程内容讲解的重要性。”

2. MIT的Introduction to Probability – The Science of Uncertainty 将于明年(2014)二月开课,课时很长,或许将是一门很实的课程,讲师John Tsitsiklis在MIT讲授的概率论课程在MIT的OCW上也有公布。由于课程尚未开始,究竟课程质量如何,让我们拭目以待!

统计学公开课
目前MOOC平台上涌现了很多统计学的课程,课程图谱曾经对统计学的课程进行了收录,详细点击《统计学公开课大盘点》:
http://blog.coursegraph.com/统计学公开课大盘点

还有一门华盛顿大学的Mathematical Methods for Quantitative Finance也受到了广泛的好评,想要快速的过一遍基础数学的朋友不妨关注一下这门课程:

@钛合金蛙眼:内容包括微积分,线性代数,最优化再捎带一些金融知识,都是数据挖掘和机器学习数学基础(除了概率统计),老师也讲的很清楚,只可惜没有证书,UW开的几门课程都不错
@算文解字:搞statistical NLP自然要吃透了概率、统计和随机过程,但适当的微积分、线性代数和数值计算基础也很重要。没时间系统恶补?No problem! Coursera上推出了一门 Mathematical Methods for Quantitative Finance ,虽然原本针对金融,但8周的课程提供的浓缩版数学对NLPer也很实用。

以上是对数学基础课进行的简单汇总,难免会有缺失和遗漏,还望谅解。如果有朋友发现不错的数学基础公开课在上文中尚未收录,希望能够留言告知。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/数学基础公开课汇总

机器学习公开课汇总

机器学习目前比较热,网上也散落着很多相关的公开课和学习资源,这里基于课程图谱机器学习公开课标签做一个汇总整理,便于大家参考对比。

1、Coursera上斯坦福大学Andrew Ng教授的“机器学习公开课”:

机器学习入门课程首选,斯坦福大学教授,Coursera联合创始人Andrew Ng老师的课程,课程图谱上多达400多人关注,20余条课程评论,绝大多数同学认为这门课程比较适合入门,以下选择其中几位同学的课程评论:

@ototsuyume 同学评价:非常好的一门入门课程。很多人诟病作业的代码给得太全,但我认为作为一门入门课程,编程作业设置得十分好,各种机器学习的作用能很直观地展示出来,这样很能激发学习兴趣。试想一下,假如不给你任何框架代码让你从头开始写,写完后得出的结果是一堆用来提交的无味的数据,对于一名初学者来说,这多么打击积极性。
这门课程极其简化了各种数学的证明,类似svm跟pca中间的求解过程都讲得很简略。要求的数学基础是低得不能再低了,所以即使是毕业几年后概率矩阵忘得差不多的人都能看懂。除去初学者之外,这门课程也很适合工作中需要用到一些机器学习但不打算深入研究的程序员。

@极度视界 同学评价:这个必然 5 星,很棒的入门课程;Ng老湿把编程作业设计到极为简单,而数据集并不单调,垃圾邮件分类/手写体分类等。学此课的同学,应该尝试丢掉Ng老湿给的框架,自己写一套算法,才好。这课我得了100%。

最后再推荐 @小小人_V 同学这门课程的学习笔记: http://vdisk.weibo.com/s/J4rRX/1373287206

2、Coursera上台大林軒田老师的“機器學習基石 (Machine Learning Foundations)公开课”:

课程正在进行中,目前感觉很不错,林老师年轻有为,也是机器学习畅销书《Learning from Data》的作者之一,课程的难度应该比上面Andrew Ng老师机器学习公开课的高一些,不过比较重要的是这门课程用中文讲解,比较适合国人:

@尘绳聋 同学评价:看老师给出的课程大纲,基本还是照着Caltech/Edx LFD的节奏走。之前跟过LFD,这次就当复习了。当然也有一些新的东西,譬如PLA的收敛证明和收敛需要的次数上界,Lecture3对learning types的介绍也很详细,原来reinforcement learning还可以用在ad system上面,看来要把Ng CS229后面的那一大块有关reinforcement learning的内容啃一下了。另外,老师讲得非常好,从video和slide也能看出很用心。

@飞林沙 同学评价: 刚听完前两讲,讲的真的非常棒!从最基本的PLA讲起,虽然很简单,但是跟着自己动手写写代码,做做数学公式,就当休息了,很棒。

林老师推出的这门课程的姊妹篇“機器學習技法 (Machine Learning Techniques)” 已于2014.12.23开课,值得关注。

3、edX上加州理工学院的“Learning From Data

和上面台大机器学习课程渊源很深,内容基本上出自加州理工的这本同名教材《Learning From Data》,林老师也曾在该校读博,这门课程的授课老师也是他的导师Abu Mostafa教授。

4、Coursera上多伦多大学Geoffrey Hinton大神的“Neural Networks for Machine Learning”公开课

这门课程主要关注神经网络以及它们在机器学习中的应用,在目前火热烫手的Deep Learning概念衬托下,这门课程简直就是必修课,不过遗憾的是这门课程只在12年10月份开过一轮,目前为止还没有开课的意思,不过好在我们还有网盘资源的备份,具体信息在“公开课可下载资源汇总”中自行查找:

@yongsun:还有什么好说的呢?Deep Learning必修课程啊!

@godenlove007:宗派大师+开拓者直接讲课,秒杀一切二流子!

@wzyer:巨牛级别的人物来开课,我也不说啥了。

5、Coursera上华盛顿大学Pedro Domingos教授的“机器学习公开课

Coursera上一门还没有正式开始过的机器学习课程,老师是机器学习的大牛Pedro Domingos,他写过的“”A Few Useful Things to Know about Machine Learning”广为流传,这门课虽然没有正式开始,但是通过preview的链接可以看课程的所有视频。@wzyer 大神的评价:个人觉得这门课比Andrew那个更深入些,老师讲的也不错。不过这个似乎就没有正式开过,我都enroll半年多了……

6、网易公开课收录的“斯坦福大学公开课 :机器学习课程

这是老一代的公开课,老师仍然是Andrew Ng教授,不过视频来自于斯坦福大学的课堂录制视频,课程难度要高一些,可以作为Ng老师Coursera上“机器学习公开课”的进阶课程,好处是有翻译字幕,比较方便国内同学的学习。

7、网易公开课收录的“加州理工学院公开课:机器学习与数据挖掘

其实就是edX上“Learning From Data”的原版课程,授课老师依然是Abu Mostafa教授,edX上老师在论坛上和同学互动,而网易公开课上有翻译。

8、超星学术上来自于贝尔实验室的“机器学习”课程:

来自于超星学术上的课程,具体情况不太清楚。

9、最后推荐的是国内龙星计划机器学习课程资源:

1)2012龙星计划机器学习课程的视频及课件

来自微博上@SunnyerEric孙晗晓 同学的信息 : 龙星计划机器学习课程的视频:http://t.cn/zlA2ZHb

网盘地址:http://pan.baidu.com/share/link?shareid=27613&uk=1513052211

关于龙星计划的课件,大家也可以在如下地方找到:

2012年龙星计划-机器学习课件

2)2013龙星计划深度学习(Deep Learning)课程视频

@龙星计划
龙星计划天津站 邓力老师的讲课视频 http://t.cn/zQixW12

@戴玮_CASIA
天津大学深度学习龙星计划课程视频:http://t.cn/zQixW12

网盘地址:http://pan.baidu.com/share/link?shareid=3220401770&uk=723014463

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/机器学习公开课汇总

自学CS总结-by 要有光LTBL

这篇文章大半年前看过,原作者 要有光LTBL 同学也在课程图谱的群里,这两天群里讨论的时候想到了这篇文章,还花了一点时间扒了出来,所以征得作者有光大神的同意,转发和备份到这里,顺便给课程做了一个内部链接。以下系转载:

首先这只是我个人的总结,希望能提供大家一些好的建议或者想法,至于具体的可实施性和可推广性就不做任何保证了。。。

只是汇报一下我学了这些课,而且做一些个人的评价,并不代表着就等同于CS的学位了。。。额,操作系统编译等等都没上过这是必然不能比的。。。我只是上了这些课,而且这些课都属于CS的范畴而已。现在也只不过是拿到了offer所以汇报一下,肯定还要继续学的。。。

如果确实准备通过自学CS来找工作,那么最好先确保有足够的时间,能力和毅力。大忙人,作业写不完天天赶ddl的,数学恐惧症,编程恐惧症或者重度拖延症基本可以点叉了。而且请至少留出一年时间来学习吧。

我的背景本科是药学和心理,MS是Columbia的Biostatistics,然后工作拿到了。。。加州某小IT公司(也就是说你们大部分不会知道名字的公司)的offer,package勉强可以跟CS MS comparable这样。不过鉴于这里面有极大的运气成分所以没有任何可推广性和借鉴价值。然后我就进入正题说自学CS了。

我的背景算是统计吧,然后这样的话是要往machine learning的方向转,完全没必要我也不愿意做纯码农or Software Engineer,我投的基本上还是比较交叉的Data Scientist或Modeling Scientist这样。需要一定的programming能力但是要求并不深。除此之外可能会一些database或者machine learning会有帮助。。。我学其他的基本是个人爱好。其他专业的同学请看看就好了。。。而且申请OPT什么的时候还要考虑工作和学位的匹配程度。

首先一点,一定要是免费!或者基本免费。。。为什么不旁听的原因是我在医学部的校区离计算机系的主校区还是有相当距离的,所以我懒得去。。。不过现在网络上有极其丰富的教学资源,尤其是在计算机这方面更是非常丰富。这里我用的主要是三个平台:

1, Coursera,由Stanford的吴恩达(什么没听说过?英文名应该更熟叫Andrew Ng)和Daphne Koller教授创建,现在有200多面课程,基本上有100多所大学吧,其中CS的课应该就有50+。他们的特点是每门课都有一定的开放时间,而且有deadline,如果没有赶上开放时间就要等半年或者更长时间才能赶上下次开放。。。所以要上的话建议提前半年到一年看好所上课程的下次开课时间。(如果是某门课的first run那么很可能会推迟开课。。。)最后一般会给certificate,但是不会有人看那玩意的。。。编程作业会有,不过一般不会限定语言。课程跟大学内教授的相似,会更偏理论。课时基本上是5-8周,然后每门课的用时不定,2-4小时吧,如果有programming assignment会更多。

2, Udacity,cofounder是google一个教授,另一个也是stanford的。。。课非常flexible。只要材料全部post了那么什么时间上都可以,什么时间完成作业也都没要求,适合填充碎片时间(比如coursera的课很少的时候安排看Udacity),会更加注重应用,会有autodesk,nvidia的人去讲。并且我认为很适合学编程。用的Python较多,如果没注明的话默认就是python了,最近也有需要C/javascipt/HTML的课。缺点是他的视频是upload到Y2B上面的(虽然现在基本都开放下载了),所以需要翻墙。技术好的请翻墙的,技术不好的请搞一个V*P*N,一个月也没多少钱,跟你学到的知识相比绝对物超所值。课基本是7周,6周的正课,最后一周一般是叫点牛人然后来个展望这样。。。每周时间也要看programming的比重,不会很多。

3, 其他,主要是iTunes U或者翻译过来的网易公开课,相比而言视频的质量会非常差。。。没了。不是特别推荐。优点是网易公开课的话是有中文翻译的。这个一般相比,看视频的时间需要的较多。

然后我第一次上Coursera的时间是4.23,第一次上Udacity的时间是4.18,也就是说到现在也没有一年。这之前我的编程经验是:R,基本可以熟练运用。。。如果统计的同学R或者Matlab应该是肯定会一个的吧。。。然后后面我会按照我上的课的时间顺序给出评价。基本上5星是必选,4星是machine learning必选,3星是推荐,2星是一般,1星是不推荐。

0, MIT计算机科学导论,5星。请到网易公开课找,或者iTunes U等找英文资源。我上课的时间是大四。讲的内容基本是以python编程为主,并且会涉及到一定的OOC(面向对象)的内容,鉴于后面的课都跟OOC没什么关系所以这个课也还是挺好的。讲的也不错,相比之下harvard的CS101我就很不喜欢。。。

1, Udacity CS101 Intro to CS: 2.5星,作为入门课是很可以的,讲的也很适合美国人(对我的意思是他们比较笨),不过如果有了MIT的做基础这个基本就跟玩似的。。。有时间上了就好也不花什么精力。或者直接作为python入门也是不错的。内容基本是build a toy search engine。还算有趣。

2, Udacity CS262 Programming Language:5星,通过build一个javascript和html的interpreter可以对计算机语言的运行方式有一个更深层次的理解。尤其是对于各种syntax error之类的。而且他的成品基本上是Udacity所有课里面最exciting的,老师的声音也很好听。难度适中。有前两个的基础应该问题不大

3, Udacity CS212 Design of Computer Program: 5星,Google的Peter Norvig讲,基本讲完之后的感觉就是所有编程都没问题了。。。不过也很难,我当时每周的课都。。。比较困难。因为当时我是101,212,262还有machine learning同时上的,外加还要抽出一点点时间复习期末考试。。。每周基本上都能有一定的成果,第一周是poker,然后后面还有word game,game solver,grammar等等非常有趣的内容,极力极力推荐。难度,挺难的,不过收获也非常大。顺便这老师我特喜欢,也是Udacity的cofounder。

4, Coursera Machine Learning:4星,ML必须课需要说什么么。。。不过比较偏应用,会介绍Neural Network,但是对SVM基本上一带而过。还有recommendation system和别的一些较应用的内容。没有reinforcement learning的部分,unsupervised也比较浅。有PA,没有期末考试,一般人这课都能拿满分吧因为没有限制尝试的次数。。。用的语言是Octave/Matlab,难度一般。顺便Andrew Ng的奇怪的中国口音实在是听起来好爽。以及老师也是Coursera的cofounder,还经常来中国玩。

5, Coursera Software Engineer for SaaS: 1星,看情况应该是不再开了,随便说几句。课的视频直接就是上课录得,质量很差非常没有诚意,而且感觉就是一直在卖自己的教材的样子。课。。。因为上的太早了我完全没概念所以也基本没听懂。勉强做了前面几个PA实在忍不了了最后这个课我就基本没上。。。用的是Ruby on Rails。

6, Coursera Human-Computer Interaction: 2星,一般。没什么特别的意思。。。有些需要自己设计界面什么的对那种基本不感冒。而且后面居然开始讲统计和实验心理学一类的东西了我有些接受不了。。。

7, Udacity CS253 Web Application: 3星,挺不错的课,就是最后用GAP搭建一个非常简单的blog以及wiki。能够提供一些关于网页应用的insight(当然非常浅),做的东西也算是非常有意思的,另外用的平台是Google的GAP,国内的同学请准备翻墙。难度适中。而且最后一单元会谈到很多很实用的问题比如scale什么的。而且能给一些关于software engineering的idea。

8, Coursera Algorithms: Design and Analysis Part 1: 5星,这个是Stanford开的那版,不是Princeton的,后者我没上过不过据说更浅一些。老师很有激情语速也比较快,写字也很难看。。。不过看多了就习惯了。算法对CS是非常重要的,也是面试常考的。这个介绍的是基本概念big-O,还有sort和search。每周都有PA,基本是给input然后求output这样,不限定语言,不过python有时候会非!常!慢!难度适中

9, Coursera Cryptography I: 3星,Stanford的密码学,讲得很详细,而且也非常难。。。毕竟都是最最聪明的人在搞这些玩意。有很多非常奇妙的trick。不过难的同时同样的也很有挑战性。这个比较偏理论。有三星的自虐指数,难度是真的很难。

10, Udacity CS373 AI: Robotics: 3星,是Udacity另一位cofounder讲的,也很不错介绍了particle filter和A*什么的。缺点是一开始重复了两周的非常基础的probability的内容,不然的话还是可以考虑给4星的。。。难度适中。

11, Udacity CS387 Applied Cryptography: 也是密码学,一视同仁给3星。这个就很应用,理论的部分不多,而且cover的比Coursera的多(Coursera的毕竟只是part I, part II还遥遥无期。。)每单元最后都有challenge题目,是真的很变态。。。尤其是final的最后一题,设计得非常巧,有大概四五个环节要把很多学到的东西都用上。做的感觉就跟拿着藏宝图寻宝,然后一个一个解开线索一样。。。因为是密码学,所以必须的自虐指数三星,难度也真的很难。另外上这课有时候也需要翻墙。

12, Udacity CS215 Algorithms:3星吧,鉴于有上面的algo了这个也不是很难。。。算是巩固好了。介绍的重点是关于graph的,dijkstra什么的。。。老师很有趣,见过一面。难度适中。

13, Udacity CS258 Software Testing: 1星,我上过的Udacity最差劲的课,课内容非常少,而且总之这个现在也用不到。我反正是有时间就上了。唯一的收获是中间写了一个数独的solver,然后我自我感觉写得很不错。。。导致后面我对数独完全失去兴趣了。。。

14, Coursera Quantum Mechanics and Quantum Computation:2星。量子。。。啊这些其实没什么关系上纯是兴趣因为密码说过量子计算机可以破RSA。。。然后非常难,非常虐。所以就不推荐了。。。我现在也只能记住最基本的qubit的共轭。。。

15 Stanford Machine Learning: 4星。是iTunes U上面的,Andrew Ng在斯坦福的讲课视频,相比前面coursera的就更理论,虽然没有NN的内容,但是svm讲得很细,还有ica和reinforcement的部分。总之算是巩固基础,然后相辅相成。同样我还是很喜欢吴恩达老师的口音!

16, Coursera Web Intelligence and Big Data: 1星。大部分很浅,不喜欢。而且考试非常无厘头。不过基本上介绍得很全面,包括file system也涉及到了。PA。。。比较傻逼。不过也不是很花时间,所以还好。

17, Udacity CS222 Differential Equation:3星,在学校基本算是没学过微分方程所以挺遗憾的。。。这个课也有涉及很多实际问题所以算是有趣。画的图也很好看。。。总之最后的感觉就是世界真和谐,世界真奇妙,世界真美好。而且用matplotlib,需要的同学可以借鉴一下。

18, Coursera Introduction to Computational Finance and Financial Econometrics:2星,本科难度的课,基本上很傻逼。。。前面70%都是在复习什么矩阵啊概率啊之类的。。。用的是R。会有一些time series的东西。。。还有一点关于股票的,不然根本就是白上了。。。

19, Coursera Probabilistic Graphical Models: 3.5星,和Machine Learning的关系也没有那么大,还不算一定必选。老师是Coursera的另一位cofounder,内容是研究生级别的,很难,PA也很难。我现在有些概念也没完全理解透。。。而且内容很多。借用weibo上老师木的评价:“别的都是讲的术,图模型讲的是道”。自虐指数三星。我当时经常周六下午做这个PA做的死去活来。。。

20, Coursera Neural Networks for Machine Learning: 4星。现在Deep Learning的领军人大牛hinton亲自讲授。内容有点。。。晦涩,但是理解之后概念还是不错的。PA什么的难度也适中。不算特别变态。

21, Udacity CS313 Theoretical Computing:2.5星,主要讲关于NP的,这个topic还是蛮有趣的。Programming的比重也不大,应该可以轻松上完。。。因为确实跟CS,主要是找工作的话关系没那么大所以到不了3星,何况NP后面还有5星课程会cover到。。。

22, Udacity CS259 Software Debugging: 2星。主要是Coursera的课都上完了没事就上了。内容如题。。。其实也可以,但是我肯定不是这么debug的。。。

23, Udacity CS271 Intro to Artificial Intelligence: 4星。Udacity当年的第一门课。两个cofounder讲。对于ML,NLP,CV,机器人,game theory等都有所涉及。看完了我突然觉得。。。尼玛原来我感兴趣的这些全都是AI啊。。。不难,没有PA,花点时间就好了。

24, Coursera Algorithms: Design and Analysis Part 2: 5星。必须的五星,之前的part 2,内容是greedy algorithm,dynamic programming和NP。涉及的东西很多,PA也变态了很多python真的特别慢。在此力荐pypy。没什么可说的算法是必须看的。而且这俩part加起来本科毕业生的水平至少就有了。。。

25, Coursera Interctive programming in Python:2.5星,用他们自己建的一个GUI去遍图形界面,也算是python入门课。很简单,不过如果是machine learning的话用处不大。。。(这门课当是因为没时间只是看了视频,也没有做作业,没拿certificate)

26, Coursera: Intro to Database: 3星 现在搬到Class2Go上面去了貌似。介绍数据库,包括一些xml啊json什么的还有nosql的部分。当然大头是SQL,因为考SAS证的时候学过了,所以也就看看。不过数据库对于big data什么的还是很重要的(准确地说nosql数据库还有DFS什么的很重要。。。),所以应该还是看看比较好。

27, Coursera Computing for Data Analysis: ?星,简单的但是比较系统的介绍R语言。看各位的需要了。

28, Coursera Game Theory: 2星,感觉。。。好奇怪的,感觉什么都没说就上完了,最后就记得一个词叫纳什均衡了。。。而且很浅,尤其是rational的假设令我感到很不安。。。当然我会说我选这课的时候根本不知道Game Thoery是博弈论。。。我还以为是什么游戏之类的呢。。。

29, Coursera Image and video processing:3星,介绍基本的关于image processing的东西,挺好的。有时候挺好奇PS里那些效果是怎么办到的,就看这个就好了。。。当然那部分貌似跟PDE有关所以其实我基本没看懂。。。

以下课程是我在上的还没上完。。。

30, Udacity CS344 Parallel Computing:2.5星,用的是build on C的CUDA。因为主要是为了提高运算速度所以用C还是可以理解的。因为不熟悉C。。。所以上成了一个傻逼啊!不过有些概念学一下还是很有助于开阔眼界的。现在Program GPU也很是流行的样子。。。而且我觉得挺难,主要是C完全不熟。

31, Coursera Linear and Discrete Optimization:2星,有很弱智的PA,基本就是填空题。然后就是线性规划嘛。。。主要cover了simplex算法等。也不是很花时间。

32, Coursera Natural Langauge Processing:看在是鄙校的份上违心给个3.5星吧。。。这个课主要是先期准备不足所以一开始很乱套导致扣了很多印象分。讲的目前为止也中规中矩,PA难度也还可以。不过那些东西感觉都太经典了。。。是不是有点过时了啊。。。NLP基本也和ML关系很紧密,所以个3.5也不算很过分。。。

33, Coursera Social Netwrok Analysis: 3星,社交网络诶很火的,虽然讲的似乎也比较浅,而且老师没有照片上那么好看。。。

34, Udacity CS291 Interactive 3D Graphics:2.5星。用Threejs吧,build on javascript。恩,想想这是魔兽会用到的技术我就觉得很有动力。。。

下面这个课我没上过:

??: Coursera Complier,所以也没法打分,用的应该是C,目测比较难但是上过的同学感觉收获还是很大的。。。不过因为python不用compile所以我也没什么概念。。。

总结:必上:MIT的导论,Udacity 262, 212,Coursera上斯坦福的算法。还有Andrew在Coursera和Stanford上面的两版Machine Learning。

另外我们有个关于Udacity和Coursera这些公开课的QQ群:244689946 (课程图谱)

最后的废话:感谢Andrew Ng,Peter Norvig等人的努力,没有他们就不会有这么多这么好的免费资源给我们。我的偶像是Steve Jobs和Walt Disney,他们不仅改变了我,也改变了世界。Andrew他们还不算,因为虽然这些公开课改变了我,但是还没看到他们改变世界,不过他们都还活着。。。所以我觉得肯定会看到那一天的。另外感谢他们给这么好的机会和资源,我觉得如果可能的话我会贯彻终身学习,坚持一直学习下去的。。。

以及感谢太傻的任老师虽然把我搞出国服务就算结束了但是一直还在帮我。。。发各种信息给我(虽然大多不靠谱),但是Udacity和Coursera也是他介绍的。。。我后面找工作的position大部分也是他发给我的。。。虽然造就了超低的回复率但是至少我要去的公司也是包含在里面的。。。

好吧再加一句太傻的服务基本上似乎是不太好的,这真的不是广告啊你们妹的,有这么广告的么。。。只不过这个老师是真的对我不错。。。

源地址: http://blog.renren.com/GetEntry.do?id=900262844&owner=232614149

安装开源在线教育平台edX的一个简单方法

开放式在线教育平台edX在今年六月份开源,当时按着Google Group中的方法“Clean install on Ubuntu Server 12.04”在一台全新的VPS上安装了一把,虽然最终安装成功,但也破费周折,最后对edX系统的总体印象是有些臃肿,依赖的东西过多,不太轻量。

前段时间一个北大的朋友在安装edX的时候和我交流了一下,他最终通过直接安装的一套完整的edX镜像的方法“Quick Start to working with the edX Platform”在windows虚拟机下安装成功。当时没有太在意这个事情,最近又捡起了edX这套开源平台,第一件事还是edX的安装问题,这一次想到了安装镜像这个比较简单的方法,于是照猫画虎的在自己的Mac上安装起了edX开源系统,全程基本没有遇到什么问题,比较容易上手,推荐想要玩edX开源平台的朋友在本机先试试这个方法。以下是我的简单记录,针对Mac OS系统,其他系统请下载相应的文件进行安装:

1、安装VirtualBox

下载地址:https://www.virtualbox.org/wiki/Downloads

我下载安装的是4.2.16版本的dmg文件:VirtualBox 4.2.16 for OS X hosts

2、安装Vagrant

下载地址:http://downloads.vagrantup.com

我下载安装的是v1.2.7版本的dmg文件:Vagrant-1.2.7.dmg

3、建立相关的目录并下载edX的课程样例:

mkdir mitx-vagrant
cd mitx-vagrant
mkdir data

最后下载edx4edx_lite到data目录下,关于edx4edx:

This is a set of source content and code for an edX course about the edX system. Included are demo problems for option, multiple choice, string, numerical, formula, symbolic math, image, custom (python script graded) response, and schematic response problems.

4、下载edX镜像文件并初始化和启动虚拟机(在mitx-vagrant目录下):

a、下载这个3.4G的镜像: mitxvm-edx-platform-08jun13b.box
md5sum: 633ca08e4f3834516c7113aa484b68c1

b、vargrant初始化:vagrant init mitxvm mitxvm-edx-platform-08jun13b.box

vagrant init mitxvm mitxvm-edx-platform-08jun13b.box
A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant

c、启动环境:vagrant up
这个需要一段时间,差点以为出问题了:

Bringing machine ‘default’ up with ‘virtualbox’ provider…
[default] Box ‘mitxvm’ was not found. Fetching box from specified URL for
the provider ‘virtualbox’. Note that if the URL does not have
a box for this provider, you should interrupt Vagrant now and add
the box yourself. Otherwise Vagrant will attempt to download the
full box prior to discovering this error.
Downloading or copying the box…
Extracting box…te: 18.4M/s, Estimated time remaining: 0:00:01)
Successfully added box ‘mitxvm’ with provider ‘virtualbox’!
[default] Importing base box ‘mitxvm’…
[default] Matching MAC address for NAT networking…
[default] Setting the name of the VM…
[default] Clearing any previously set forwarded ports…
[default] Creating shared folders metadata…
[default] Clearing any previously set network interfaces…
[default] Preparing network interfaces based on configuration…
[default] Forwarding ports…
[default] — 22 => 2222 (adapter 1)
[default] — 80 => 8080 (adapter 1)
[default] — 81 => 8081 (adapter 1)
[default] Running ‘pre-boot’ VM customizations…
[default] Booting VM…
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Configuring and enabling network interfaces…
[default] Mounting shared folders…
[default] — /vagrant

5、在上述工作完成后,就可以在本地局域网下访问相应的站点了:
http://192.168.42.2 — LMS(学习管理系统,也就是学生用的系统,我们在edX公开课平台上看到的就是,这个本地站点目前只有edx4edx样例课程)
http://192.168.42.3 — CMS (Studio)(内容管理系统,也就是开课老师用的系统,你可以在这个里面尝试编辑和创建课程)
http://192.168.42.4 — Preview (Studio)
http://192.168.42.5 — Edge (Studio)

这个时候你就可以在本地机器上玩edX平台了,如果你想登陆的话,用户名和密码如下:

You may login to the system using a pre-created user: (email “xadmin@mitxvm.local”, password “xadmin”); if you create your own user, to active the user use the “xmanage” command (see below).

后半句的意思是指这个虚拟镜像提供了一个xmanage的管理工具,你可以通过如下vagrant命令查看相关的命令和账号信息:

vagrant ssh — xmanage help

Welcome to the MITx / edX instance management tool

Commands available:

restart-lms – restart the LMS (for vagrant boxes, running at http://192.168.42.2)
This will force re-loading of course data
restart-cms – restart the CMS (aka the Studio system)
restart-edge – restart the Edge server (part of the Studio system)
restart-preview – restart the Preview server (part of the Studio system)

restart-xqueue – restart the xqueue main system
restart-consumer – restart the xqueue consumer
restart-xserver – restart the xserver (python code grader)

logs – view last 100 lines of log file for
appname should be one of lms, cms, edge, preview, xserver, xqueue

activate – activate user specified by username
setstaff – make user (specified by username ) into staff

update-mitx – update mitx system code (use with care!)
update – update this management script (from central repo)
help – print out this message, as well as local NOTES.txt file
—————————————-
Notes file:
=============================================================================
Welcome to the ODL MITx Vagrant Box
=============================================================================

The following services are available:

http://192.168.42.2 – MITx LMS
http://192.168.42.3 – MITx Studio System
http://192.168.42.4 – MITx Edge System
http://192.168.42.5 – MITx Preview System

pre-defined users:

edx user=xadmin, email=xadmin@mitxvm.local, pw=xadmin
edx user=guest, email=guest@guest.local, pw=guest

最后edX提供了两个主要方法来创建和管理课程,感兴趣的同学可以看一下:

There are two main workflows you can use to develop courseware:

LMS (+github) — edit XML files of courses in the data directory, then click on “Reload course from XML files” in the Instructor Dashboard (under the Admin tab). The course files may be stored in github, and a webhook configured to make the LMS automatically update upon checkins (“gitreload”). See edX documentation of XML formats.

Studio — Create course using the web-based interface, and view on the Preview (“draft”) and Edge (“live”) sites. Beware that the Studio system is really meant for single-author work; it loses all history, and there is no visibility for what changes are being made by authors. But Studio is wysiwyg and gives fast feedback, so it can be a good way to start.

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/安装开源在线教育平台edX的一个简单方法