分类目录归档:在线教育

Deep Learning Specialization on Coursera

深度学习课程资源整理

这里整理一批深度学习课程或者深度学习相关公开课的资源,持续更新,仅供参考。

1. Andrew Ng (吴恩达) 深度学习专项课程 by Coursera and deeplearning.ai

这是 Andrew Ng 老师离开百度后推出的第一个深度学习项目(deeplearning.ai)的一个课程: Deep Learning Specialization ,课程口号是:Master Deep Learning, and Break into AI. 作为 Coursera 联合创始人 和 机器学习网红课程Machine Learning” 的授课者,Andrew Ng 老师引领了数百万同学进入了机器学习领域,而这门深度学习课程的口号也透露了他的野心:继续带领百万人进入深度学习的圣地。

作为 Andrew Ng 老师的粉丝,依然推荐这门课程作为深度学习入门课程首选,并且建议花费上 Coursera 上的课程,一方面可以做题,另外还有证书,最重要的是它的编程作业,是理解课程内容的关键点,仅仅看视频绝对是达不到这个效果的。参考:《Andrew Ng 深度学习课程小记》和《Andrew Ng (吴恩达) 深度学习课程小结》。

2. Geoffrey Hinton 大神的 面向机器学习的神经网络(Neural Networks for Machine Learning)

Geoffrey Hinton大神的这门深度学习课程 2012年在 Coursera 上开过一轮,之后一直沉寂,直到 Coursera 新课程平台上线,这门课程已开过多轮次,来自课程图谱网友的评论:

“Deep learning必修课”

“宗派大师+开拓者直接讲课,秒杀一切二流子”

这门深度学习课程相对上面 Andrew Ng深度学习课程有一定难道,但是没有编程作业,只有Quiz.

3. 牛津大学深度学习课程(2015): Deep learning at Oxford 2015

这门深度学习课程名字虽然是 “Machine Learning 2014-2015″,不过主要聚焦在深度学习的内容上,可以作为一门很系统的机器学习深度学习课程:

Machine learning techniques enable us to automatically extract features from data so as to solve predictive tasks, such as speech recognition, object recognition, machine translation, question-answering, anomaly detection, medical diagnosis and prognosis, automatic algorithm configuration, personalisation, robot control, time series forecasting, and much more. Learning systems adapt so that they can solve new tasks, related to previously encountered tasks, more efficiently.

The course focuses on the exciting field of deep learning. By drawing inspiration from neuroscience and statistics, it introduces the basic background on neural networks, back propagation, Boltzmann machines, autoencoders, convolutional neural networks and recurrent neural networks. It illustrates how deep learning is impacting our understanding of intelligence and contributing to the practical design of intelligent machines.

视频Playlist:https://www.youtube.com/playlist?list=PLE6Wd9FR–EfW8dtjAuPoTuPcqmOV53Fu

参考:“牛津大学Nando de Freitas主讲的机器学习课程,重点介绍深度学习,还请来Deepmind的Alex Graves和Karol Gregor客座报告,内容、讲解都属一流,强烈推荐! 云: http://t.cn/RA2vSNX

4. Udacity 深度学习(中/英)by Google

Udacity (优达学城)上由Google工程师主讲的免费深度学习课程,结合Google自己的深度学习工具 Tensorflow ,很不错:

机器学习是发展最快、最令人兴奋的领域之一,而深度学习则代表了机器学习中最前沿但也最有风险的一部分。在本课内容中,你将透彻理解深度学习的动机,并设计用于了解复杂和/或大量数据库的智能系统。

我们将教授你如何训练和优化基本神经网络、卷积神经网络和长短期记忆网络。你将通过项目和任务接触完整的机器学习系统 TensorFlow。你将学习解决一系列曾经以为非常具有挑战性的新问题,并在你用深度学习方法轻松解决这些问题的过程中更好地了解人工智能的复杂属性。

我们与 Google 的首席科学家兼 Google 智囊团技术经理 Vincent Vanhoucke 联合开发了本课内容。此课程提供中文版本。

5. Udacity 纳米基石学位项目:深度学习

Udacity的纳米基石学位项目,收费课程,不过据说更注重实战:

人工智能正颠覆式地改变着我们的世界,而背后推动这场进步的,正是深度学习技术。优达学城和硅谷技术明星一起,带来这门帮你系统性入门的课程。你将通过充满活力的硅谷课程内容、独家实战项目和专业代码审阅,快速掌握深度学习的基础知识和前沿应用。

你在实战项目中的每行代码都会获得专业审阅和反馈,还可以在同步学习小组中,接受学长、导师全程的辅导和督促

6. fast.ai 上的深度学习系列课程

fast.ai上提供了几门深度学习课程,课程标语很有意思:Making neural nets uncool again ,并且 Our courses (all are free and have no ads):

Deep Learning Part 1: Practical Deep Learning for Coders
Why we created the course
What we cover in the course
Deep Learning Part 2: Cutting Edge Deep Learning for Coders
Computational Linear Algebra: Online textbook and Videos
Providing a Good Education in Deep Learning—our teaching philosophy
A Unique Path to Deep Learning Expertise—our teaching approach

7. 台大李宏毅老师深度学习课程:Machine Learning and having it Deep and Structured

难得的免费中文深度学习课程:

课程主页:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html
课程视频Playlist: https://www.youtube.com/playlist?list=PLJV_el3uVTsPMxPbjeX7PicgWbY7F8wW9
B站搬运深度学习课程视频: https://www.bilibili.com/video/av9770302/

8. 台大陈缊侬老师深度学习应用课程:Applied Deep Learning / Machine Learning and Having It Deep and Structured

据说是美女老师,这门课程16年秋季开过一次,不过没有视频,最新的这期是17年秋季课程,刚刚开课,Youtube上正在陆续放出课程视频:

16年课程主页,有Slides等相关资料:https://www.csie.ntu.edu.tw/~yvchen/f105-adl/index.html
17年课程主页,资料正在陆续放出:https://www.csie.ntu.edu.tw/~yvchen/f106-adl/
Youtube视频,目前没有playlist,可以关注其官方号放出的视频:https://www.youtube.com/channel/UCyB2RBqKbxDPGCs1PokeUiA/videos

9. Yann Lecun 深度学习公开课

“Yann Lecun 在 2016 年初于法兰西学院开课,这是其中关于深度学习的 8 堂课。当时是用法语授课,后来加入了英文字幕。
作为人工智能领域大牛和 Facebook AI 实验室(FAIR)的负责人,Yann Lecun 身处业内机器学习研究的最前沿。他曾经公开表示,现有的一些机器学习公开课内容已经有些过时。通过 Yann Lecun 的课程能了解到近几年深度学习研究的最新进展。该系列可作为探索深度学习的进阶课程。”

10. 2016 年蒙特利尔深度学习暑期班

推荐理由:看看嘉宾阵容吧,Yoshua Bengio 教授循环神经网络,Surya Ganguli 教授理论神经科学与深度学习理论,Sumit Chopra 教授 reasoning summit 和 attention,Jeff Dean 讲解 TensorFlow 大规模机器学习,Ruslan Salakhutdinov 讲解学习深度生成式模型,Ryan Olson 讲解深度学习的 GPU 编程,等等。

11. 斯坦福大学深度学习应用课程:CS231n: Convolutional Neural Networks for Visual Recognition

这门面向计算机视觉的深度学习课程由Fei-Fei Li教授掌舵,内容面向斯坦福大学学生,货真价实,评价颇高:

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka “deep learning”) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. The final assignment will involve training a multi-million parameter convolutional neural network and applying it on the largest image classification dataset (ImageNet). We will focus on teaching how to set up the problem of image recognition, the learning algorithms (e.g. backpropagation), practical engineering tricks for training and fine-tuning the networks and guide the students through hands-on assignments and a final course project. Much of the background and materials of this course will be drawn from the ImageNet Challenge.

12. 斯坦福大学深度学习应用课程: Natural Language Processing with Deep Learning

这门课程由NLP领域的大牛 Chris Manning 和 Richard Socher 执掌,绝对是学习深度学习自然语言处理的不二法门。

Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails, customer service, language translation, radiology reports, etc. There are a large variety of underlying tasks and machine learning models behind NLP applications. Recently, deep learning approaches have obtained very high performance across many different NLP tasks. These models can often be trained with a single end-to-end model and do not require traditional, task-specific feature engineering. In this winter quarter course students will learn to implement, train, debug, visualize and invent their own neural network models. The course provides a thorough introduction to cutting-edge research in deep learning applied to NLP. On the model side we will cover word vector representations, window-based neural networks, recurrent neural networks, long-short-term-memory models, recursive neural networks, convolutional neural networks as well as some recent models involving a memory component. Through lectures and programming assignments students will learn the necessary engineering tricks for making neural networks work on practical problems.

这门课程融合了两位授课者之前在斯坦福大学的授课课程,分别是自然语言处理课程 cs224n (Natural Language Processing)和面向自然语言处理的深度学习课程 cs224d (Deep Learning for Natural Language Processing).

13. 斯坦福大学深度学习课程: CS 20SI: Tensorflow for Deep Learning Research

准确的说,这门课程主要是针对深度学习工具Tensorflow的:

Tensorflow is a powerful open-source software library for machine learning developed by researchers at Google Brain. It has many pre-built functions to ease the task of building different neural networks. Tensorflow allows distribution of computation across different computers, as well as multiple CPUs and GPUs within a single machine. TensorFlow provides a Python API, as well as a less documented C++ API. For this course, we will be using Python.

This course will cover the fundamentals and contemporary usage of the Tensorflow library for deep learning research. We aim to help students understand the graphical computational model of Tensorflow, explore the functions it has to offer, and learn how to build and structure models best suited for a deep learning project. Through the course, students will use Tensorflow to build models of different complexity, from simple linear/logistic regression to convolutional neural network and recurrent neural networks with LSTM to solve tasks such as word embeddings, translation, optical character recognition. Students will also learn best practices to structure a model and manage research experiments.

14. 牛津大学 & DeepMind 联合的面向NLP的深度学习应用课程: Deep Learning for Natural Language Processing: 2016-2017

课程主页:https://www.cs.ox.ac.uk/teaching/courses/2016-2017/dl/

github课程项目页面:https://github.com/oxford-cs-deepnlp-2017/

课程视频Playlist: https://www.youtube.com/playlist?list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm

B站搬运视频: https://www.bilibili.com/video/av9817911/

15. 卡耐基梅隆大学(CMU)深度学习应用课程:CMU CS 11-747, Fall 2017 Neural Networks for NLP

课程主页:http://phontron.com/class/nn4nlp2017/

课程视频Playlist: https://www.youtube.com/watch?v=Sss2EA4hhBQ&list=PL8PYTP1V4I8ABXzdqtOpB_eqBlVAz_xPT

16. MIT组织的一个为期一周的深度学习课程: 6.S191: Introduction to Deep Learning http://introtodeeplearning.com/

17. 奈良先端科学技術大学院大学(NAIST) 2014年推出的一个深度学习短期课程(英文授课):Deep Learning and Neural Networks

18. Deep Learning course: lecture slides and lab notebooks

欢迎大家推荐其他没有覆盖到的深度学习课程。

注:原创文章,转载请注明出处“课程图谱博客”:http://blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/深度学习课程资源整理

2014年9月份MOOC部分热门课程汇总

又到了一年的开学季,几大MOOC平台又有不少质量很高的课程轮番推出,本文将对9月已经或者即将开设的偏向计算机科学类的课程进行一个简单的选择和汇总,各位可以从中选取自己感兴趣的课程。

Coursera:

1. 杜克大学的 Data Analysis and Statistical Inference

本课讲授比较基础的统计学,但不同于传统的统计学内容,本课将很大一部分精力用在锻炼学生的实际动手能力。部分课程练习是在一个叫“DataCamp”的平台上完成的,力求学生能够通过实际练习解决现实中的问题。

2. 斯坦福大学的 Automata

本课属于比较传统的计算机科学理论课程,讲授了计算理论和复杂度方面的内容,讲师是个传奇人物,对纯粹的计算理论感兴趣的朋友不要错过这门课程。

3. 加州理工学院的 The Caltech-JPL Summer School on Big Data Analytics

本课不同于一般的课程,由一系列的讲座组成,讲述了数据分析领域的一些常用概念,属于比较偏向实务的课程。本课没有限制时间,也没有作业和证书。

4. 普林斯顿大学的 Algorithms, Part I

普林斯顿的数据结构是一门很有口碑的课程,本课的内容作为普林斯顿大学翻转课堂的材料,课程的内容和作业和该校校内基本一致。对于算法和数据结构感兴趣的朋友,这门课是非常不错的选择。唯一遗憾的是课程不提供证书。

5. 香港中文大学的 Information Theory

目前互联网上关于信息论的课程屈指可数,本课是为数不多系统讲授信息论的课程,感兴趣的朋友可以了解一下。

6. 台湾大学的 計算機程式設計 (Computer Programming)

这门课程是台湾大学计算机专业的基础课程,在台大拥有很好的口碑。课程用C语言教授,内容和国内大部分学校同类课程相似,初学计算机编程的同学不要错过这门华语课程。

7. 佐治亚理工学院的 Computational Investing, Part I

本课讲授基础的量化投资概念,属于比较偏向实务的课程。课程内容本身其实没有难度,面向有一定编程基础的同学。

8. 北京大学的 Introduction to Computing 计算概论A

来自北京大学的计算概论是又一门关于计算机基础理论的课程,适合对计算机编程感兴趣的同学作为入门课程。

9. 莱斯大学的 An Introduction to Interactive Programming in Python

又是一门关于计算概论的课程,本课通过一步步制作一款小游戏的方式,逐步介绍编程的基本概念。本课在世界范围内获得了极高的评价,不同于国内计算导论的课程,本课使用容易上手的Python语言,相信对于初学编程的同学来说这门课程将是非常棒的选择。

10. UCSD的 Bioinformatics Algorithms (Part 1)

这是一门关于生物信息学的课程,不需要生物学的背景知识,如果之前修习过算法的同学会觉得这门课程非常亲切。该课属于算法在生物学中的应用,通过本课可以提升自己的编程技巧。

11. EPFL的 Functional Programming Principles in Scala

EPFL的这门课程之前已经在Coursera上开设多轮,也是很多人初次接触Scala甚至是函数式编程的启蒙课程。课程的讲师是Scala的发明人,经典的课程再次启程。

12. 马里兰大学的 Usable Security

本课是马里兰大学在Coursera上开设的“Cybersecurity”系列的第一门课程,主要讲述从产品角度如何涉及一个安全的软件和系统。对安全领域感兴趣的朋友不要错过这门课程。

13. 北京大学的 操作系统与虚拟化安全

来自北大的操作系统课程,对操作系统以及安全领域感兴趣的朋友可以关注一下这门课程。

14. 斯坦福大学的 Machine Learning

虽然本课的讲师Andrew Ng已经离开Coursera加入百度,成为百度首席科学家,但是他给世界上对机器学习感兴趣的人留下的财富至今延续。经典的课程无需多做解释。

15. 台湾大学的 機器學習基石 (Machine Learning Foundations)

原汁原味的机器学习课程,在Coursera上的本课与台湾大学的线下课程同步。有一定难度,但如果坚持学习下来将会受益匪浅。

16. 斯坦福大学的 Mining Massive Datasets

据说该课原来属于斯坦福大学的收费在线课程,如今搬到了Coursera上免费提供给全世界。本课讲授了大数据技术的方方面面,对于数据分析感兴趣的朋友一定不要错过这门课程。

edX:
1. 清华大学的 电路原理 (开课时间:9.15)

本课是首批华语MOOC课程之一,一经上线便好评如潮。目前互联网上已经有数门关于电路原理的课程,包括MIT的6.002X。本课拥有与6.002X相媲美的质量,是国内大学生学习电路原理的不二选择。

2. 清华大学的 数据结构 (开课时间:9.16)

清华大学的数据结构一经上线便受到了一致的好评,课程内容接近清华校内线下课程的难度,推荐给渴望接触到国内最高学府知识的同学。

3. 比利时UCL大学的 Paradigms of Computer Programming – Fundamentals (开课时间:9.22)

这是一门关于编程范式的课程,对于日后期望从事软件开发或者在职工程师而言,这门课程能够为日后的开发生涯打下扎实的基本功。

4. 香港科技大学的 A System View of Communications: From Signals to Packets (Part 1) (开课时间:9.23)

本课是香港科技大学电气工程专业(EE)的第一门专业基础课程,对电子通信感兴趣的朋友不要错过这门课程。

5. 加州理工学院的 Learning From Data (开课时间:9.25)

本课的讲师和台湾大学机器学习课程的林轩田老师有很深的渊源,前者是后者的导师。本课制作精良,内容有深度,与台大的机器学习有相当的重合度。

6. 北京大学的 魅力机器人 | The Fascinating World of Robots and Robotics (开课时间:9.30)

来自北京大学的机器人课程,对机器人领域感兴趣的朋友可以关注一下这门课程。

2014年4月份MOOC部分热门课程汇总

近期MOOC的内容呈现出爆炸式的增长,各式各样的课程让人应接不暇。本文将对各大平台4月份预计比较热门的课程进行简单的汇总,各位可以根据自身的需求挑选合适的课程。

Coursera平台:

1. 美国西北大学的Everything is the Same: Modeling Engineered Systems 将于4月6日开课。本课主要讲述一些简单的物理工程实例,对物理学、工程学感兴趣的朋友可以关注。同时这门课程中会穿插Matlab和Python的内容,适合懂得一点编程的朋友。

2.马里兰大学的Exploring Quantum Physics将于4月7日开课,本课讲述的是量子物理。目前讲述量子物理方面的课程还不多,这门课或许是个不错的选择

3. 约翰霍普金斯大学的Getting and Cleaning Data将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分

4.约翰霍普金斯大学的R Programming将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分,R语言日益成为数据分析领域的首选工具,本门课程可以作为对这个工具入手的入门课程。

5. 约翰霍普金斯大学的The Data Scientist’s Toolbox将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分,主要介绍了目前数据分析中会经常用到的工具,例如:Github,  MarkDown, R Console, R Studio等等

6. 上海交通大学的“唐诗宋词人文解读”将于4月8日开课。课程从喜闻乐见的唐诗宋词入手,触摸一段历史与一群文人的体温,领悟人生旅途的趣味和智慧。

7. 上海交通大学的“媒介批评:理论与方法”将于4月8日开课。“媒介批评”是现代大众传播学的重要分支,简单而言,就是批评媒介,是 对大众传播媒介本身进行批评,属于应用传播学的研究领域。

8. 密歇根大学的Programming for Everybody将于4月10日开课。在众多编程基础课中这门课属于新的成员,适合编程零基础的朋友。

9. 慕尼黑大学的Competitive Strategy将于4月11日开课:

@ototsuyume:

其实就是简单易懂的博弈论入门,课程量少老师讲得作业难度不高而且每道题都有说明,大概是大学里面公共通选课的难度,有空可以看看

10.科罗拉多大学博尔德分校的Physics 1 for Physical Science Majors将于4月14日开课。本课属于比较传统的大学物理,之前获得了不错的反响

11.慕尼黑大学的Introduction to Mathematical Philosophy将于4月14日开课。在现代的哲学研究中越来越多的需要思考很多底层的问题,在这期间免不了需要思考很多数学层面的问题,本课推荐给对数学或哲学领域感兴趣的朋友。

12.匹兹堡大学的Warhol将于4月21日开课。出生于匹兹堡市的Andy Warhol是20世纪最伟大的艺术家之一,波普艺术的创始人,对当代的艺术和文化产生了巨大的影响。本课将介绍Andy Warhol的生平和作品,让大家一睹大师的风采。

13.香港中文大学的“中國人文經典導讀”将于4月24日开课。本課程是以四堂演講的方式,分別討論中國文化的四個主要面向,彙文學、歷史、哲學、藝術于一爐。每一個主題以一篇或兩篇經典文本爲基礎,指導學生如何精讀作品,學習以欣賞和批判的雙重角度重新解讀經典,同時獲得對中國文字的陶冶和享受。它本爲大學一年級學生所設,但不限於中文系本科專業,希能為學生鑒賞中國傳統文化開啟新的視野。

14.瑞士洛桑联邦理工学院(EPFL)的Functional Programming Principles in Scala将于4月25日开课。本课之前几轮获得了极高的评价,主要通过Scala语言讲述函数式编程的思想。本课的讲师正是Scala语言的发明人。

15. 斯坦福大学的Algorithms: Design and Analysis, Part 1将于4月29日开课:

@超級現實的超現實理想主義者:

这门课对我的影响非常大,直接改变了我的思维方式,并且为日后的学习打下了很好的基础。

edX平台

1. MIT的Street-Fighting Math将于4月8日开课。如同街头打架一样,不论你使用什么招式,打架的唯一目的就是寻求胜利。各位接受了多年“严谨”的数学教育,不妨感受一下“Quick and Dirty”的数学方法。

2.哈佛大学的Justice将于4月8日开课。这门“公正”课早在MOOC出现之前就已经红遍国内互联网,想要重温或者学习这门经典课程的朋友不妨关注一下这门MOOC形式呈现的课程。

3.京都大学的The Chemistry of Life将于4月10日开课。该课属于化学和生物的入门课程。

学堂在线:

1. 清华大学的组合数学将于4月10日开课。随着计算机科学的发展,组合数学在这段时间里获得了极大的发展。不同于传统数学领域侧重于“连续”层面,组合数学解决的是“离散”层面的问题。本课将从基础的排列组合开始,逐步深入了解计数问题的不同解决思路,通过对现实生活中计数问题的演绎和学生们共同体会组合计数问题不断抽象深入的挖掘过程,引导学生共同感受数学知识的精妙,从而深入理解组合数学对计算机理论发展的推动作用。

2. 加州大学伯克利分校的云计算与软件工程—第一部分将于4月21日开课。本课的讲师是软件工程和计算机科学领域的大牛,课程主要通过Ruby on Rails等目前热门的互联网开发技术阐述诸如“云计算”、“敏捷开发”等软件工程领域热门的主题。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接: http://blog.coursegraph.com/2014年4月份mooc部分热门课程汇总

近一年上的MOOC总结+其他

注:很多同学以为这篇文章是课程图谱写得,所以不得不借用有光同学的宝地做个补充说明:还记得去年 @要有光LTBL 同学的“自学CS总结” 码?,前几天邀请有光同学在课程图谱博客上写一下这一年的MOOC学习之路,然后这篇文章就出炉了 “近一年上的MOOC总结+其他”, 看完后我只有一个问题:还有什么是这些MOOC学霸们不想学的?以下荣耀属于有光同学

先是课程介绍后面是FAQ,最后是关于认知失调的瞎扯,可以随便选一个开始看,或者直接分享。基本上是20多门课吧,CS的应该不到一半。另外由于我语文学得不好所以这些评价都非常散乱而且全都是我个人的意见。没有注明则全部是coursera上面的。

这些是上完了的:

1,Computational Neurosience:计算神经学,学到后面发现我非常喜欢这个领域,怎么说呢,让我有点想读这个领域的PhD的那种喜欢。。。神经网络就是从这里出来的,但是神经网络和人脑除了scale的差距还有其他的差距,这门课都讲到了,印度老师很逗,另一个女老师酷酷的。PA会用一点octave但是基本上非常友好。最后还涉及了一点Brain Computer Interface这种很炫酷的东西。

2, Intro to Data Science:数据科学入门,相当不错的入门课,一上来先定位,后面的东西也都相当实用并且达到了期望,虽然对我来说比较新鲜的就是最后两讲一个是Data Visualization一个是玩了一下Hadoop(当然现在MapReduce已经完全木有任何新鲜感了。。。)指导也很明白。除了在AWS上跑Hadoop之外,PA要求Python,SQL,R,但是都相当基础,话说这三样都是Data Scientist必备技能吧。。。

3, High Performance Scientific Computing:科学计算,非常statistic friendly,因为是在applied math系下面的,对于一些commend line的东西会手把手的教。后面讲了Fortran还有iPython和OpenMP和MPI,都挺新鲜的,尤其可以和MapReduce,GPU computing做一个比较。除开没有certificate这一点之外非常不错。顺便一提这个就是课堂录像,虽然看了好几周我才看出来。。。即使是课堂录像,质量也是有差距的。
题外话:我发现UWashington的课其实都很靠谱啊有木有。。。。

4, Model Thinking:模型思维?总之是一门很多人上过的课,所以我也上了一下。基本上介绍了很多很有意思的结论,比如voting没法达到最优,或者群体意见不是个体意见的平均。。。之类的。课程也很轻松,也和统计,博弈论有不少重叠的部分。另外这门课的课件基本不能看。。。

5,Fundamentals of Audio and Music Engineering:这怎么翻,音乐工程么。。。我主要是冲着其中物理的部分去的,也基本没失望。毕竟中学感觉物理学的很不扎实。这门课肯定涉及了声学的部分,还有不少关于电路的。。。电容,电感应器,交流电之类的。。。最后是可以买材料做个音响的,当然那部分我就忽略了。。。

6,Computer Networks:这也是UW的课,中规中矩,没啥可说的。。。应该是很全面的。5个layer,DNS,什么的。。。总之该涉及到的都涉及到了,还有老师的女儿有时候会从屏幕后面飘过哈哈哈讨论版上似乎已经有她的粉丝群了XD

7,Maps and the Geospatial Revolution:。。。Penn State的课吧,主要是因为GIS很火所以想上一下,那么。。。其实基本没啥内容的感觉,就是介绍了一个online的叫arcGIS的可以自己玩玩看,虽然其实也蛮强大的。每周的内容其实也就二十多分钟水到无极限。。。但是最后的Project还是做的挺痛苦的。

8,Introduction to Mathematical Philosophy:对于哲学一向没有爱。。。不过看在数学哲学的课上就上了一下。德国的学校吧大概。。。啊其实我也不是特别喜欢纯数学但是。。。前面我觉得很无聊,但是后面有几讲还是蛮有趣的,比如关于belief,还有最后关于voting(再次出现)和量子计算的奇特之处。另外一个感想就是怎么尼玛这么多概率统计的内容。。。感累不爱

9,A Brief History of Humankind:这门课也是非常,非常,非常,非常喜欢的一门课,请注意我真的用了4个非常而不是因为结巴。。。喜欢到什么程度?喜欢到我想付20刀还是40刀搞signature track了。。。影片神级的,老师讲的也非常好,涉及了生物,政治,宗教,经济,科学,心理等等相当多的方面(我知道这个并列有问题= =)。。。当然我之前没认真上过历史课所以这部分不完全可信。但是我真的是这门课的脑残粉。。。

附人类简史结课公告的翻译:
亲爱的同学们:

我们关于人类历史的旅程已经走到了终点,我希望你们跟我一样享受这门课程,并在离开的时候对历史,人类,甚至你自己,有了一个更深刻的理解
人们经常会问,学习历史是为了什么?他们有的时候会想我们学历史是为了预测未来,或者从过去的错误中吸取教训。但是我想我们不是要从过去中学到什么,而是要尽力挣脱它,摘掉历史给我们带来的枷锁。
所有人都出生在一个特定的世界,被某种规律和价值观所统辖,也服从于某种经济和政治规律。由于我们生而如此,我们认为周遭的一切事实都是自然且不可避免的,我们也倾向于认为人们在今天的生活方式,是唯一可能的生活方式。我们很少认识到,我们所熟知的这个世界是一系列偶然历史事件所产生的意外后果,而这不仅决定了我们的科技,政治,和经济,也决定了我们的思维方式,甚至我们的梦想。就好像过去抓着我们的后脑勺,使我们的眼睛只能看到那唯一一种可能的未来。这种力量从我们出生的一刻起就作用在我们身上,所以我们对此毫无知觉。学习历史就是为了弱化这种力量,使我们的头颅能够左右转动,使我们的大脑能够用新的方式去思考,使我们的眼睛能够看到多种多样的未来。
我希望通过引领你们学习人类简史,你们能够感受到历史的枷锁稍微松开了一些。

Yours,
Dr. Yuval Noah Harari

10,Survey of Music Techonology:GeorgiaTech的课,老师有点。。。nerd么,还是怎么说的那种气质。用Reaper,然后试用期内可以完成这门课。。。他们还开发了python的API叫earSketch。除了作曲作业非常蛋疼之外还是很不错的一门课。讲了,比如说前一阵很火的3D音乐是怎么做出来的。。。还有就是DAW的操作之类的,然后如何用Python插入音乐,写新的effect,可惜现在还不支持用Python写MIDI,不然一定会很有趣。另外。。。还有随机作曲,youtube有一个视频下面评论是antimusic我笑了半天。。。

11,Foundations of Business Strategy:商业决策基础,讲five force和各种analysis,其实我觉得还算是有意思的但是精力实在不够所以forum看的不够多。而且感觉也不是很适合学这个。。。最后要选一个公司做analysis(课上讲的不可以,然后居然把Apple和Disney都讲了。。)选公司也有讲头的,如果非上市公司没有数据的话就很难得高分。。。然后我选了我们公司,所以这门课的得分。。。你懂得。。。

12,From the Big Bang to Dark Energy:从大爆炸到暗能量,选这门课一个是因为名字很炫酷,一个是因为是物理课,一个是因为东京大学。教授还好没多少口音。。。而且讲的也算是浅显易懂。作业也不难。涉及到了反物质暗物质暗能量这些,基本上是很尖端的物理了(我猜。。),当时正好刚讲到希格斯玻色子这玩意就获诺贝尔奖了,当时感觉还挺与时俱进的哈哈

13,Functional Programming Principles in Scala:Scala创始人讲FP和Scala。。。没啥好说的,好课一门,不上可惜。Scala给我的感觉是很强大,但是为了方便加了很多杂七杂八的特性。。。容易忘,而且不是非常统一的感觉。

14,Introduction to Engineering Mechanics:静力学基础,没啥好说的。。。来回来去强调力平衡和力矩平衡(这个好像我们不常讲),所以也要强调受力点这些。如果单看这门课的话应该是一般般。。。顺便这也是GeorgiaTech的,GT给我感觉就是教学的目标清楚明白。而且段落之间的区别非常明显。然后这个老师之前是在西点军校。。。

15,Computer Architecture:Princeton的课,木有SoA。。。当然,也是课堂录像。。。所以我也没特别好好上,尤其prereq没有上有的地方听的云里雾里的,比如cache啥的,这方面完全一点基础都没有。。。但是还是听明白一些基本内容的,比如那些个pipeline,superscalar,还有一些trade-off。但是必须说老师讲的还是相当好的。

16,Neuroethics:神经伦理,当时期待了好久。。。UPenn的课。老师很老了。。。然后课程质量也一般,就是对着镜头讲故事,其实听录音效果也差不多,问题是这个音频不仅音量小而且杂音大。。。虽然都知道老师很不容易但是。。。我觉得没多少涉及到伦理的东西,没有听到我想听到的比较深刻的讨论。。。

17,General Game Playing:简评:Stanford在coursera上的平均表现因为这门课降低了一个档次落到了台大之后。GGP其实是个挺有趣的概念,希望能有一个Player,接收规则,然后能对这种规则做出反应。这应该是AI的未来吧,AI Planning里面也涉及到了类似的比如对规则的表达,都很接近。这门课的缺点:1,大哥每周也就20min的视频逗我呢?2,20min也就算了这讲的也太浅了吧。。。monte carlo这种事情都是倒数第二周才讲的有木有搞错!!虽然最后一个propnet还是很高大上的。3,20min就算了请至少把syllabus cover了吧!说要讲的时间控制你妹的在哪呢在哪呢!4,quiz还经常出错。。。

18,The Role of Renminbi in the International Monetary System:人民币在国际货币体系中的地位,作为一个爱国的小伙伴看到这么霸气的题目自然毫不犹豫的选了。香港什么大学开的。。。讲师好像很牛逼的样子虽然我不认识。这门课也是课堂视频,而且我怀疑就是两三次讲座。。。然后剪吧剪吧就变成4周的课了。总体来说还可以接受但是大师,虽然我知道您是香港人这也是香港的大学,但是能不能不要讲这么多关于那港币的事情。。。

19,Analysis of a Complex Kind:复分析入门,总的来说是相当有趣的课,而且讲的也不难,德国女数学老师啧啧。。。非常推荐。讲了分析的一些基本问题还一些很奇特的性质,还讲了Julia set(就是那个很有名的分形图)是怎么出来的。就是上完了会感觉数学真有趣真奇妙的那种特别好的课。

20,Automata:Jeff Ullman大牛开课。。。虽然我觉得讲课的水平也就一般。一开始RE和finite state machine,后面是CFG和PDA,最后是Turing Machine和NP相关的。因为上过Programming Language所以前一半基本就是复习,Theoretical Computer Science也上过所以NP基本也是复习。。。Turing Machine还是很有趣的不过,而且最后还讲了如果发现了NP=P的算法应该如何处理(捂着开大公司哈哈),虽然我个人是觉得NP不等于P的。另外这门课真的是太多证明了。

21,Applications in Engineering Mechanics:GeorgiaTech的,接着上面的Intro to Mechanic Engineering。因为我觉得intro上的不爽就继续上了这个。。。结果这个上得爽极了!就喜欢这种应用课!从钳子讲到了吊车,再讲到了摩擦力啥的。另外很久没做这种需要很多手算的物理计算题了,做完之后感觉整个人都非常舒爽。

22,Principles of Reactive Programming:接着上面的Scala课。这门课讲了Monad(Future,Observable)还有actor及一些distributed system的东西。应该说内容非常丰富,PA非常有挑战性。缺点是因为有三个老师所以内容不太连贯,第二个老师和Martin风格明显就不一样。。。另外就是PA有点太难了。。。

23,机器学习基石:如果不算机率课的随便看看的话这是上的第一门台大的课,一开始本来不准备上的因为觉得syllabus看上去太基础了,后来那一段实在没啥课所以还是上了。林老师讲的相当有水平,而且真的都是很基础的问题(当然,想学fancy算法的同学要等这门课的下半段:机器学习技法了)。新的东西主要是VC维度,并且把很多之前只是模模糊糊想到的问题明确的讲了出来,我非常推荐把这门课作为机器学习的入门课。而且是中文的。作业反正我觉得不是很难。。。毕竟ML都学过那么多遍了。。。

24,红楼梦:台大中文系开课,当然也是中文课。选的原因一个是四大名著里对于红楼梦最不熟,一个是因为语文学得不好所以希望能挑战一下中文系的课看看到底是啥样的。女老师感觉好有气质。。。课一开始是讲读者需要具有的心态和曹雪芹的背景,后面主要讲了两点一个是爱情观一个是世家复杂的人际关系。老师课里面说了好多遍因为课程长度的限制。。。感觉很可惜。貌似youku上有老师在台大的授课视频。作业基本都是互评,也算是很符合这门课的性质。

这些是正在上的,因为没上完所以评价都很简短:

25,ChinaX:Harvard在EdX上开的长达一年半的课。。。尼玛分成9小段每段都有一个certificate。。。最后还有一个大的。怎么说呢,反正我是基本没学过中国历史。。。这样看看老美怎么看中国,也是挺有意思的。希望能坚持下来。

26,法与社会:一个是法学的课之前没上过,第二个这是上交的课。感觉还可以。。。老师挺有想法的。中文教学。

27,Information Theory:港大的课,就是照着书念,而且还有18个互评作业,已放弃SoA旁听中。老师说多媒体版的书真是一点错也没有。这是我在coursera上面上过的课程体验最差的一门没有之一。

28,Energy 101:能源是个很重要的话题吧!据说会讲为什么电动车并不会减少碳排放这种,以及为什么太阳能这些对于能源利用没啥影响。。。当然,还没讲到。

29,Artificial Intelligence Planning:AI课,反正就5周就上了。现在反正是讲了A-star和一些问题的表达方式。课程图谱上有wryer大牛的详细评论。

30,Game Theory II:Advanced Applications:不小心看到就选了,因为上了一。这课其实也就4周。。。而且第一周目前还是讲voting那些东西。

31,基础光学I:台大的课,中文教学。。老师有的地方还是很赞同的,比如说成绩只能表示你和老师的缘分,看看你认为重要的老师是不是也认为重要。虽然互评要求用繁体这一点很囧。。。第一周就是历史故事,还看不出什么。但是我认为台大有叶老师把关课程质量应该都非常高。

下面是已选的,主要是说一下为啥选。。。:

32,Fundamentals of Electrical Engineering:因为之前没接触过EE,顺便这课有免费matlab用(4个月)

33,Convex Optimization:在Stanford的OpenEdx上。因为据说是大牛开课而且这个很重要吧

34,An Introduction to Functional Analysis:听上去会很有趣的数学课。是法国的学校开的。

35,史记:因为是台大的课。

36,Engineering Systems in Motion: Dynamics of Particles and Bodies in 2D Motion:这是GeorgiaTech力学系列的第三课,运动中的力学

37,Buddhist Meditation and the Modern World:冥想诶听上去无比高大上

38,Buddhism and Modern Psychology:自从上了人类简史我就对佛教非常有兴趣

=======

FAQ时间:
1,请问你从哪来的这么多时间上这么多课?
首先我上这些课的目的之一是为了尽可能快尽可能多尽可能广的吸收知识,所以基本上有些就不求甚解了。如果真的要钻研,看paper,或者深挖论坛的话时间肯定不够。
然后上MOOC是我工作之外的第一课余爱好,作为单身宅男基本上下班就开始上,周末也在上,吃饭的时候也有时候一边看视频课一边吃。看一下你们多少时间花在美剧动漫或者勾搭妹子上了就能知道我的时间从哪来了。。。从来不是没有时间的问题,问题只是priority不够高。
另外,基本不需要加班,很重要。或者学生的时候做作业不是很花时间。

2,请问你是如何坚持上完这些课的?
首先一个肯定是强迫症啦。
另外,如果不是时间问题的,上不完那就是能力问题。但是我觉得我能力没有问题,所以就上完了。
顺便时间安排什么的其实也是能力问题,效率不够高导致没时间也是能力问题,懒也是能力问题,缺乏驱动自己学习的能力,拖延症我就不需要吐槽了吧?我从来都是作业布置下来第一时间就努力做完的。。。从来不关心deadline是哪天。。。
另外还有一个很重要的原因,请见下面对于认知失调的胡扯。

3,请问你为什么要上这些课?
因为我觉得这些都很有趣。
为自己的行为选动机是个很奇妙的话题(是的这个是可以选的,还是见认知失调吧)
简要来说,如果我说是为了找工作,那么显然找到工作后我就没必要上了。
这种外在的动机一般而言都很难持久,也就很难会成为life long learner。嗯这是我的目标。
另外就是我可以用我的50多张SoA糊墙。

4,请问你上这么多奇怪的课有什么用?是要拯救世界吗?
当然不是。。。
首先一个是,我找到了现在的工作。虽然一开始并没有打算上上课就能找到。。。但是反正不上的话肯定找不到。而且找到工作后就没必要只上CS的课了。
其次一个,保持大脑对于新鲜知识的容纳度,不学可能会变迟钝。。。而且我觉得现在什么东西都变化得很快,最有用的能力应该还是快速学习的能力。这样干啥都不怕。。。
然后,打发无聊时间啊,并且这个爱好不仅廉价(其实是免费)而且听起来逼格非常高。。。
所以真正学的那些知识其实一大半都没什么实际用途,扯淡除外。知识面是可以拓展的,并且看问题的角度会稍微不同。具体的细节性的知识肯定过几个月不用就忘了,但是一些学科的基本概念还是会留下来的。
另外就是发现自己的兴趣点,keep looking,dont settle!

=======
关于认知失调
我觉得认知失调是心理学里面很有趣的几个实验之一,我觉得它的实验结论也是最有用的。。。嗯,所以我在我们组的study group上(其实是modeling study group)讲了关于认知失调的内容。实验详见《改变心理学的40项研究》,具体不描述了。不过结论是行为会改变你的想法。和自我觉知理论结合,就是如果你做出违反你想法的行为,那么你的行为可能会改变你的看法,如果你的想法并不明确,那么你会从你的行为归纳出你的看法。
背后的原因,就是你需要使你的行为合理化,如果缺少一个合理的理由,那么就必须改变观点使得这个行为(从大脑的角度)看起来比较合理,否则你就会觉得自己是个傻波伊。因为行为是没有办法改变的,所以变的只能是看法,除非干脆的承认自己就是能力不足。。。
这个结论其实相当powerful,因为一般而言我觉得观点比较难以撼动,但是对于自己的行为是有一定的自控力的,这样就可以通过行为培养观点,观点反过来又促进行为。

而且我认为这不但能影响观点,也会影响动机(或者说动机也是一种观点)。这个也涉及到归因理论了,其实我觉得认知失调可以算是归因理论的一部分吧。我希望学习的动机是因为兴趣,而不是因为外在的奖励。因为内在的动机是很难消失的,但是外在的动机达到之后就会消减,所以对于有益的事情要尽量进行内在归因,那么这个怎么做?就可以通过控制行为。

比如你说我是为了找工作才要上这些课的啊,那么如果我找到工作之后还在上,这个动机就明显不成立。那我可能就会倾向于做内归因。内归因又可以驱动我继续上课。

而且还有一点就是如果你无法达到预期的行为,这对于你自己的影响比你想象的要大,因为很可能会反过来降低你的动机。而这又会弱化你的行为。。。这样就会离既定的道路和安排越来越远。

所以,如果有一门课没有上完,那么很可能会减弱我整个上online course的动机,这个影响可能会非常大。我认为online course是有益且需要坚持的,所以为了防止出现突然有一天就不上online course这种事情的发生,要尽量避免任何的不良影响。

而且这个除了上课之外还可以用在别的地方来塑造自己的行为使自己成为自己想要成为那种人。当然这个要在能力范围之内,并且最好不借助外在评判,就像是你无法一定让自己有钱(因为需要和社会互动),但是你可以让自己上进。

数据分析公开课汇总

数据分析是如今非常热门的话题之一,课程图谱为此简单整理一下目前(2014年初)在MOOC平台上有关数据挖掘方面的公开课程。
Coursera

1.  Johns Hopkins University的Data Analysis 该课通过R语言讲授数据分析的技巧:

@Cloga在路上:很好的一门课程,用R为工具讲了数据分析挖掘的一些算法和实例。

2. University of Washington的Computational Methods for Data Analysis 该课为课堂录像,通过MOOC的形式进行组织,讲师Nathan Kutz讲课生动、幽默,但是该课不足之处是课程不提供证书激励且几乎没有课程工作人员参与讨论,属于自助性质的课程。

3. University of Washington的Scientific Computing:科学计算是很多工程应用领域的基础课程,该课的讲师同样为Nathan Kutz,课程形式与上一门Computational Methods for Data Analysis基本一致。

4. University of Toronto的Statistics: Making Sense of Data

@Mavlarn008:就像这门课的标题“making sense”一样,这门课最好的地方就是让你对统计有”感觉”。虽然讲的比较简单,但是对于理解这些概念非常有用。 最后那个大胡子还自弹自唱一首他自创的有关这门课的歌,也很有意思。

5. University of Washington的Introduction to Data Science

@Cloga在路上:很好的一门课,尤其对于我这种初学者,老师讲的面很广,涉及了数据科学的很多方面。
不足之处是课程内容过多有些内容讲的很匆忙,比如数据可视化这个部分,大家普遍反馈讲的有点水,Graph那部分也有点水。
比较好玩的是,课程结束后Bill好像有些事情,拖了一段时间才给出分数,大家在课程论坛上各种吐槽,无比欢乐。

@伟伟酱说:正如老师开始所讲的,这门课的目的只是让你成为advanced beginer,课程内容涵盖了数据库(SQL,NoSQL),MapReduce,基本的数值分析,机器学习,数据可视化。类似于另外一门课Web intelligence and big data,两者都应该算是入门型课程,学生想要深入学习的话可以选择其他专门的课程。
有人认为老师讲课枯燥,你总不能指望每个老师把数学课讲的有历史课那么有趣吧~

@钛合金蛙眼: 希望和失望并存。。。课程内容结构很好,讲的不好;作业很赞,对有一定基础的人不难,但入门的同学可能还是有困难。如果只是想粗浅了解课程各个topic的,跟着做作业就不错,想深入还需自学

6. Columbia University的Big Data in Education:该课讨论的是将数据分析的技巧运用于教育领域

7. Johns Hopkins University的Computing for Data Analysis

@宋鑫要学习:想入门R语言的可以听听。我自己之前有看过一些R的入门书籍,但是总感觉云里雾里,这门课让我感觉自己摸着点门道

@Puriney:这门课更确切说确实是R语言指南,很多实用并且系统地把R用法娓娓道来,没有啥算法,因此可能有人觉得不象一门综合大学的课程而更象蓝翔技校般的技能课。我想跟当时课程开课有一定关系,当时我记得是这门4周课时的课(很精简了)先开(Roger Peng主讲),结束之后马上接着便是Roger Peng的好基友Jeff Leek (他们都是http://simplystatistics.org/博客的共同博主)讲的Data Analysis。Jeff的这门课就更加复杂,作业里有更多计算成分在,就不那么“技校”了。 p.s. 这是我唯一一门上完不那么费脑力的课(相比那些算法的课)。Jeff的这门我没有坚持到底,当时我很讨厌“互相批改”的评分制度(如果没记错)

@要有光LTBL:R讲的挺好的,一直在用但是知识体系并不是很系统。这门课还是讲得不错的。。。

@wzyer:这门课就应该叫作R使用手册。全是R的语法与应用,有些让我失望。语法什么的太琐碎,很容易遗忘,放到课上讲太多语法个人以为不妥。

 

8. Stanford University的StatLearning: Statistical Learning:名著The Elements of Statistical Learning: Data Mining, Inference, and Prediction(ESL)的作者Trevor Hastie和Rob Tibshirani开设的课程,本课的配套教材An Introduction to Statistical Learning: with Applications in R在美国亚马逊上获得了极高的评价,在课程中该教材将会免费对外开放

9.Duke University的Data Analysis and Statistical Inference:该课将会由R语言讲授统计学和数据分析方面的内容,欢迎关注

Udacity
Udacity近期与企业界合作推出了一些数据分析领域的课程,课程内容本身对外公开免费,但如果需要获得证书以及专门的在线辅导的话则需要支付一定的费用。
1. Introduction to Hadoop and MapReduce:

@ziyoudefeng: 这门课程太简单了,google搜索 mapreduce PPT 出来的这些PPT,看上几个也都抵上这三节课了。不过,总共也就3节课,听听也无妨。讲的内容很初级,小白用户可以网上的讲义加视频一起学习!

2. Introduction to Data Science

3. Data Wrangling with MongoDB

4. Exploratory Data Analysis

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接:http://blog.coursegraph.com/数据分析公开课汇总

2014年一月份开设课程汇总

2013年,MOOC开始进入人们的视野,2014年将是MOOC正式全面爆发的一年。

2014年一月已经确定会有多门课程即将开设,鉴于内容之多已经可以用“狂轰滥炸”来形容,课程图谱为大家进行简单的梳理,大家根据自己的需要挑选心仪的课程吧

介绍的重点主要还是以计算机科学和数学相关的课程为主:

Coursera平台

1.  斯坦福大学的 Cryptography i ,开课时间:1月6日

这门课程在 Coursera 上开课次数非常高,据说现在已经开到第9轮:

@ffffffoouddddd: 过几天要开始新的一轮了,感觉完成还没多久。不过之前都没做编程题,这次得把编程题做了。这门课理论性很强,到后面基本上都没有 in-video quiz 了。这门课是分类在 CS: Theory 下的。期末考试有点难,因为和之前的作业很不一样。

@Candy的爸爸: Stanford的密码学线上课程,主讲Dan Boneh非常给力,语速很快,是密码学界的大牛。每周的课程内容很多,主要讲了密码学的原理,包括流密码、对称密码、非对称密码,加密认证、完整性算法等。课程内容很值得推荐。我花了非常多的时间来学这门课。准备上7月份的Cryptography II。(注:Cryptography II其实已经跳票多次了,虽然官网上已经确定明年春季会开,不过是否还会跳票至今还是未知)

2. 伊利诺伊大学香槟分校的 Heterogeneous Parallel Programming 开课时间:1月6日

@wzyer: 就是讲CUDA的,额……不知为啥听过几个亚洲人的课都觉得不够给力。这个课……还行吧,学到了CUDA的基础知识,几个编程作业也还不错。不过算不上精品。个人觉得学习CUDA还是Udacity上那个课比较好。
@yongsun: 对GPU编程的各种principles和best practices有不错的介绍,不过老师讲的不是很流畅,PA的环境(特别是评分系统)也颇受诟病,希望后期有更好的改进…

3. 香港中文大学的Information Theory 开课时间:1月6日

信息论的运用相当广泛,在通信以及密码学领域都有实际运用,对于有一定数学基础的朋友可以关注。

4.巴黎中央理工学院的Discrete Inference and Learning in Artificial Vision 开课时间:1月10日

这门课的讲师Nikos Paragios是这个领域的知名专家,感兴趣的朋友可以关注

5. 华盛顿大学的Computational Neuroscience 开课时间:1月10日
该门课程的讲师Rajesh P. N. Rao还因为成功将大脑与电脑链接而成为一时的新闻话题(新闻链接:华盛顿大学成功实现人脑至人脑信号传输

@要有光LTBL: 印度老师很幽默,女老师有点像冷血女杀手酷酷的感觉。。。
讲得很细致,尤其指出了现有神经网络模型和人脑之间的一些区别,我觉得在这方面改进可能是未来的发展方向?
我还是很喜欢这个领域的。另外发现UWashington的几门CS课质量都相当高啊。。。

6.宾夕法尼亚大学的Calculus: Single Variable 开课时间:1月10日
该课曾在2013年年初通过美国官方ACE认证,成为承认学分的课程

@基佬的愛__:这门课讲数列和级数,相同的内容 Robert Ghrist 的 Calculus: Single Variable 也涉及到了。Jim 讲的要比 Robert 要细致,比如一些数列和级数的收敛性的测试定理,Jim 会花一整个 lecture 讲推导过程, Robert 讲的没那么详细。另外整门课我最喜欢的一个 lecture 是关于 Taylor series 那节,Taylor Series 的 motivation 就是 approximation ,实际上他是 linear approximation 的推广,对某个函数在某点做 Taylor expansion 实现上就是找一个函数,使他在该点的值和原函数相等,并且该点的每一阶导数也和原函数的每一阶导数相等,导数反映的是函数的变化情况,这样我们就找到了一个和原函数在某个区间内相同的函数,说在某个区间内是因为有一个收敛性的问题。我可能记不住 Taylor series 的公式,不过我已经随时能把 Taylor series 推导出来了。还有个很有意思的 lecture,为了说明 geometric series 的收敛性,Jim 举了个造桥的问题,用质量均匀分布、形状相同的长木条造桥,最多能造多远?答案是理想状况下,想多远就多远。只要我们把每一块木条放在下一堆木条的重心处就能保证它不倒,然后你会发现每次增加的长度加起来正好构成一个不收敛的级数,Jim 自己造了这么一座很壮观的桥,你能看到这门课课程介绍的图片就是这样一座桥,实际上 lecture 里 Jim 造的那座还要壮观,比课程介绍里的那座要更长。总体来说这门课内容不多、难度不大、(不过我之前已经上过 Robert 的课,并且自学过一些其他的数学)、占用的时间不多,我基本看完视频就马上能把作业完成,不过这门课还是很有启发性的,有很多有意思的东西,Jim 在课程讨论版里也是一如既往的 supportive。另外这门课也有一本配套的免费教材。

7.爱丁堡大学的Artificial Intelligence Planning 开课时间:1月13日

@wzyer: Planning嘛,看到题目就想到了A*。不过学过这门课了才发现实际应用中的算法还是很多的,除了状态空间搜索,还有策略空间搜索等等很多办法。这门课程的内容很多,视频量很大,我险些就放弃了。但是作业倒不多,作业和考试挺有挑战性的。

8. 杜克大学的Image and video processing: From Mars to Hollywood with a stop at the hospital 开课时间:1月20日
对通信和计算机视觉领域感兴趣的朋友可以关注

@freealbert:这门课定位应该是图像处理的入门课程, 内容很全面也很鲜活,从灰度,像素等的最基础的知识一直讲到如今在学术界大红大紫的稀疏表示。Slide和Demo演示都很赞,相信应该能激起很多人对图像处理的兴趣,K-SVD算法就是在他的课上搞明白的。 关于授课老师, Sapiro本人是图像处理的大牛, 光在IEEE上就有文章150余篇, 在PDE和小波方面都有很大的贡献.

9. 莱斯大学的Fundamentals of Electrical Engineering 开课时间:1月20日

@wzyer:课程本身还不错,教授满头白发也很让人尊敬。不过,内流满面的说,他讲的太快了……一门导论课,他从电路基础讲到通信技术,内容很多,速度很快,想深入理解的话课下还得花不少时间……我就那么囫囵吞枣的过了。作业和考试评分系统也经常有点bug啥的。

10. 马里兰大学的Programming Mobile Applications for Android Handheld Systems 开课时间:1月21日
该门课程是Coursera平台上第二门有关Android开发的课程,对移动App开发感兴趣的朋友可以关注一下这门课程

11. 普林斯顿大学的Algorithms, Part I 开课时间:1月23日
数据结构大师Sedgewick的名著Algorithm 4th的配套课程,对于希望能够锻炼扎实数据结构基本功的朋友不要错过这门课程

@培翔-_-:lectures本身4分差不多了 算深入浅出 但是assignment必须5分+
各种内存、性能优化 爽到爆
@wzyer:很好的课程!老师充分展示了名家风范。内容系统,结构紧凑。示例代码简洁清晰。更难得的是作业题目非常有意义,评分脚本很完善。是我上过的课中作业部分最好的了。
@ecluzhang: 这门课分上下两部分。6周跟完了,这个上部分是一个非常浅显易懂的算法入门,基本功方面非常清晰。
前面介绍完算法及分析方法之后,后面每个算法都用思路+动态demo+代码片段+复杂度分析的方式。
值得一提的是代码片段,虽然是java描述但也很简洁,视频里则多了一些java相关的东西(比如assert是什么啊、java有哪些接口会在代码段里用到啊),估计是出于入门的定位。但对于不用java编程的来说就显得有些多余。

12.华盛顿大学的Computer Networks 开课时间:1月24日

@wzyer: 这门课是现今所有mooc平台上最全面的一门介绍计算机网络的课程。课程以网络的OSI七层模型为主线,全面覆盖了支撑现有互联网的各种基础架构和协议。其中又有重点地讲解了 TCP/IP,HTTP,802.11等常用基础协议,目的是使所有上完课的同学,都能够对于数字信号如何在网络上传播有一个清晰的认识。就我自己上完课的感受来说,这门课完全能够完成这个任务。

不过,如果从讲解和交互性上来说,这门课还是难以与一些精品课程相媲美,只能算是一般水平。老师对于各个问题的讲解基本遵循了“提出问题-》解决方案-》应用实例”的顺序,所举的小例子也足够简单清晰,所以不会出现难于理解的情况。但是从交互性和趣味性上说,有意思的讲解不多,也没有什么特点突出的、有趣的内容来让人加深理解。因此上课的时候常常让人觉得乏味。个人认为这一点以后还有很大的改善空间。

其实说这门课程很无趣也并不准确。整个课程里还是时常会有有趣的事情发生,比如空中飞来飞去的小花盆,比如在老师背后扮鬼脸的吃货小萝莉。好吧……也许有人会喜欢这个。不过这个确实……确实和主题关系不大。只这能算是为课程增添一点有趣的小插曲。

这门课的作业分为两个部分,一部分是选择填空题,这部分的分数和最后的证书密切相关;另一部分则是编程和一些网络工具的使用,这个不计分,只是帮助加深理解。由于时间关系,我上课的时候并没有完成第二部分。但我仍然强烈建议想认真学习这门课程的同学去完成编程以及网络工具使用这一部分。虽然这里不算分,但对于课程内容的理解是大有裨益的。

最后该说说老师了,David Wetherall 是计算机网络方面的专家。也是著名的计算机网络教材:Computer Networks的作者之一。这本教材在Amazon上评分是3.9分,要高于著名的SICP,当然和一些大牛的接近5分的经典巨著没法比,不过也绝对够得上好书的标准了。而且他作为老师所讲授过的课程全部是计算机网络相关的,可谓相当专一。因此,完全不用怀疑老师的专业性。

最后,我把这门课推荐给想了解计算机网络的相关知识的同学,也许它算不上很深入,但绝对能为你以后的深入学习打下坚实的基础。

@超級現實的超現實理想主義者:内容覆盖非常全面的一门课,可以看出老师的用心。不过正如@wzyer 所说的:“提出问题-》解决方案-》应用实例” 的授课方式,这门课还是显得比较传统,虽然老师的授课水平不用质疑,但是交互体验还是有点欠缺,毕竟计算机网络是一门偏重工程的课程,如果在Link Layer以上的部分能够将一些概念通过现实中的工具进行演示效果可能会更好一点。可能老师也发现了这个问题,于是大家就看到了老师和他的家人为此作出的努力(看过视频大家就知道我在说什么了,哈哈)
另外值得称赞的是老师在课堂论坛社区里也很积极的与学员互动,常常能很快给出反馈

@要有光LTBL:讲的清楚明白,quiz什么的涉及的也挺合理,别的也没啥可说的。。。顺便我也没做编程作业= =

13. 巴黎中央理工学院的An Introduction to Functional Analysis 开课时间:1月27日
对泛函分析感兴趣的朋友不要错过了

OpenEdx平台
1.哈佛大学的Introduction to Computer Science 开课时间:1月1日

2. 斯坦福大学的Introduction to Databases 开课时间:1月7日

3. UTAustin的Linear Algebra – Foundations to Frontiers 开课时间:1月15日
对于线性代数感兴趣,希望通过编程动手理解的朋友们不要错过这门课程

4.斯坦福大学的StatLearning: Statistical Learning 开课时间:1月21日
统计机器学习,经典教材Elements of Statistical Learning 的作者亲自出马讲解,本课还会提供免费配套教材 An Introduction to Statistical Learning, with Applications in R 对统计学、机器学习感兴趣的朋友千万不要错过!

5.斯坦福大学的Convex Optimization 开课时间:1月21日
优化领域的大师Stephen Boyd亲自出马授课,千万不要错过!

Udacity平台
全世界第一个通过MOOC平台实现的硕士生项目OMSCS(Online Master of Science in Computer Science)将于明年一月正式开课,以下列出了1月将在该项目中开设的课程:
1. CS 6210, Advanced Operating Systems
2. CS 6250, Computer Networks
3. CS 6300, Software Development Process
4. CS 7641, Machine Learning
5. CS 8802, Artificial Intelligence for Robotics: Programming a Robotic Car
(详细信息:OMSCS:Program Information

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/2014年一月份开设课程汇总

数学基础公开课汇总

良好的基础是成功的一半。在如今这个时代,数学成为人们社会运行中不可缺少的组成部分,拥有良好的数学基础就等于为自己创造了更多可能,使得人们可以有足够的资本在这个变化繁杂的社会里来调转方向。

大学里有三门数学课是绝大部分专业的学生必修的,分别是:微积分、线性代数、概率统计。课程图谱本次就为这三门课罗列一下目前(2013年)几大MOOC平台收录的相关课程。

微积分公开课
1. 俄亥俄州立大学的Calculus One 是一门口碑非常不错的课程,讲师表情丰富、讲解投入,深得学员的欢迎:

@基佬的愛__ 同学评价“这门 Calculus One 内容比较基础,没有讲拓扑,没有涉及多变量函数,所有的讨论都是在 R 上进行的,差不多等于国内工科高数上的简化版。Jim Fowler 讲课很清楚,耐心很好,推导从来不跳步骤,很显然的步骤也写出来(其实我上过的所有的数学系教授教的 MOOC 的都是这样的),有时候我都有点不耐烦了,所以你跟着他上下来肯定能把这部分内容掌握好。我觉得学过一些函数的高中生甚至初中生就能听懂。印象中每周都会有一两个 lecture 是在室外进行实验。Jim 还提供了一本自己写的教材,教材写的要比他上课讲的严格一些,他上课讲的比较直观、稍欠严谨,可能是希望这门课的受众更广的原因,我建议看完 lecture 把对应的教材也看一遍就完美了。还有一个课程配套的网站 http://mooculus.osu.edu/ ,每周都有 exercises,从最 trivia 的到稍有难度的,总体来说都不是很难的题目,目的在于检查你是否理解了某个概念,不过因为很多都太 trivia 我都是挑着做的。 整个课程有 15 周,可能是最长的 MOOC 跟完很有成就感。Jim Fowler 是我上过的所有 MOOC 里上课最激情的一个讲师,属于表演型的老师,给人的感觉是他很享受整个教书的过程,很能带动学生。Jim 也是我上过的所有课中最愿意和学生互动的讲师,他几乎会回复每一个帖子,而且他不摆架子,允许我们叫它 Jim。Jim 说他在大学的一部分工作就是负责 MOOC,之后可能会开多变量微积分、拓扑、复分析、抽象代数等课程,明年3月会有一门他开的课程,目前还不知道是什么内容,我已经打算上所有 Jim Fowler 的课了。”

@ffffffoouddddd 同学评价“内容很简单,我估计比大学里面要学的微积分内容少70%。这位老师是很有激情的,拍摄视频时离镜头很近,有种身临其境的感觉,并且很有喜感(可能是因为他是光头)。观看视频时你总觉得他下一秒就要把你逗笑那种。而且他们也有一本他自己写的教材,很不错,有自己的俄亥俄州立大学的练习平台,我没怎么去练习因为太简单了。Coursera 上习题可以回答很多次,……”

2. 俄亥俄州立大学的Calculus Two: Sequences and Series 是前一门课程的后续:

@基佬的愛__ 同学评价 “这门课讲数列和级数,相同的内容 Robert Ghrist 的 Calculus: Single Variable 也涉及到了。Jim 讲的要比 Robert 要细致,比如一些数列和级数的收敛性的测试定理,Jim 会花一整个 lecture 讲推导过程, Robert 讲的没那么详细。另外整门课我最喜欢的一个 lecture 是关于 Taylor series 那节,Taylor Series 的 motivation 就是 approximation ,实际上他是 linear approximation 的推广,对某个函数在某点做 Taylor expansion 实现上就是找一个函数,使他在该点的值和原函数相等,并且该点的每一阶导数也和原函数的每一阶导数相等,导数反映的是函数的变化情况,这样我们就找到了一个和原函数在某个区间内相同的函数,说在某个区间内是因为有一个收敛性的问题。我可能记不住 Taylor series 的公式,不过我已经随时能把 Taylor series 推导出来了。还有个很有意思的 lecture,为了说明 geometric series 的收敛性,Jim 举了个造桥的问题,用质量均匀分布、形状相同的长木条造桥,最多能造多远?答案是理想状况下,想多远就多远。只要我们把每一块木条放在下一堆木条的重心处就能保证它不倒,然后你会发现每次增加的长度加起来正好构成一个不收敛的级数,Jim 自己造了这么一座很壮观的桥,你能看到这门课课程介绍的图片就是这样一座桥,实际上 lecture 里 Jim 造的那座还要壮观,比课程介绍里的那座要更长。总体来说这门课内容不多、难度不大、(不过我之前已经上过 Robert 的课,并且自学过一些其他的数学)、占用的时间不多,我基本看完视频就马上能把作业完成,不过这门课还是很有启发性的,有很多有意思的东西,Jim 在课程讨论版里也是一如既往的 supportive。另外这门课也有一本配套的免费教材。”

3. 宾夕法尼亚大学的Calculus: Single Variable 在今年年初获得了美国官方的认可,成为可以获得正式学分的在线课程

@基佬的愛__ 同学评价 “Robert Ghrist 这门课和 Jim Fowler 的 Calculus One 有重叠的部分,不过内容更深入,课程周期也挺长的。课程总共分五个部分,Functions,Differentiation,Integration,Applications(主要是积分的),Discretization(主要讲数列和级数)。积分的应用部分略有难度,讲的内容比我以前上的高数课讲的积分的应用要多 centroids 和 moments and gyrations 我是第一次学,第一部分的 Taylor series 我觉得没有 Jim Fowler 讲的好。这门课作业量挺大的,每周大概是五个 lecture(外加一亮个 bonus),每个 lecture 对应一个 core 和 一个 challenge 作业,core 一般10道左右,challenge 一般2-5道左右,我做了所有的 core 和一部分的 challenge 。作业是不计分的,某个单元会有一次 quiz,期末会有个 exam。另外,讲师是个 geek,他的 lecture 里很多彩蛋。”

@52nlp 评价 “Coursera在今年一月份同时推出了两门微积分课程,一门是这个单变量微积分,另一个是微积分上(Calculus One)。我同时跟了这两门课,不过由于工作及春节等等缘故,大概跟了一半就放弃了,不过还是可以点评一下。相对来说,这门课制作的课件非常有意思,但是Calculus One讲得更生动一些。

这门课程的一个参考书是不到50页的一个小册子:FLCT: the Funny Little Calculus Text ,这个在google book上能阅读免费电子版,google play 上也只有0.45美元的价格,课件的确很有趣并且动感实足,这样导致感觉老师讲得有点不生动了。不过总体来说,这门微积分入门课还是非常不错的。”

线性代数公开课
线性代数是一门非常实用的课程,但是国内绝大多数的同学在学习这门课程的时候并不能很好理解线性代数的重要性,究其原因可能是因为教学方式相对于现实运用的滞后性。目前国外MOOC平台的线性代数课程往往结合了计算机编程,通过动手解决问题来加深对于这门课程的理解。

1. 布朗大学的Coding the Matrix: Linear Algebra through Computer Science Applications 通过Python来解决现实中的实际问题,来帮助学生对于知识的理解。不过有趣的是,对于这门课程大家的反响不一:

@ototsuyume 同学评价“值得吐槽的很多:
1.老师讲课水平不咋样,课程内容也有问题,很多基本概念没有说清楚
2.作业量偏大,而且大部分是重复的计算,比如上上周作业是要实现matrix类各种运算,然后作业里面还要用另外的方法算matrix的乘法,不明白这样做的意义何在
3.课程介绍说这门课很偏向应用,但貌似基础概念讲不好应用讲得也很浅,从作业上没看到这点,你将线性变换好歹在作业里让学生拉长一张图片都比实现vector、matrix类要好吧
4.svd分解等内容因为课程长度问题不会讲,这门课的含金量进一步降低。
另外虽然吐槽的是这个老师主页上还写着拿过布朗大学的优秀讲师奖项的,从他讲课的方式来看我不明白这个奖到底是怎么评的…”

@大家都叫我瑞爷 同学评价“这门课不能算是一门入门课,尤其是不能视为线性代数入门课,因为关于数学部分的课程材料过于简略。此外,这门课还有编程作业较多的特点。因此此课比较适合:了解线代,但是不懂如何将线代应用到计算机上解决问题。我见过有人吐槽这门课线性代数教的太少了。所以想学线性代数的guys请移步到mit公开课网站直接修线性代数。”

2. UTAustin的Linear Algebra – Foundations to Frontiers 将于明年在Edx平台上开课,本课同样也是希望通过计算机编程来帮助学生理解线性代数的概念,让学生充分理解这门课的重要性。由于这门课尚未正式开课,质量究竟如何让我们拭目以待!

3. 最后隆重推荐网易公开课上收录的“麻省理工公开课:线性代数”:

这门课程虽然是老一代的公开课,但是讲得确实确实非常好,更详细的信息可参考这篇文章《线性代数的学习及相关资源》。

概率论公开课
生活中充满不确定性,如何更好地理解和面对这种不确定,正是概率和统计学所主要面对的议题。正因为如此,概率统计是适合每个人去学习的一门课程
1. 台湾大学的機率

@基佬的愛__ 同学评价 “这门课半途弃了。讲师是个 EE 背景的教授,虽然第一周第一个 lecture 叶老师明确说了这门课比较注重生活中的应用,还是有些小失望,如果叶老师选择自己更擅长的 EE 方便的课程可能会效果会更好。这门课不合我口味是因为太不严肃,推导少了点。课程前几周有一课里叶老师引入了一个事件域/空间(event field)的概念,我不记得他用的哪个名词了,反正他给出的定义是样本空间的幂集。事件域(event field)我用英文在 google 搜没有搜到这个概念,只有 wolfram 的 wiki 说它指的就是样本空间,和叶老师的定义不一样,用 baidu 搜发现国内的教材里确实有这个概念,定义也是和叶老师的课里一样的,但是叶老师引入这个概念后面的课里(至少在我上完的那几周里)没用到这个概念,那引入这个定义有什么意思,我受不了这种不严谨。另外叶老师喜欢在每周花一整节课的时间讲大道理让我非常反感,人之患在好为人师,客观的真理是可以教的,但是怎么做人就不太好教了,我觉得人不是从别人的建议里学到东西的,人是从自己的经验,犯过的错中学习的。对于叶老师不公布作业解答的做法也不太认同。叶老师也鲜有在论坛上回复同学数学上的问题,有个 TA 还是很认真的。值得肯定的是叶老师也是属于教学非常热情的讲师,不过他在课上用的梗很烂,没得到我的共鸣……我觉得他过于花心思在课上一些讨人欢喜的梗上而忽略了课程内容讲解的重要性。”

2. MIT的Introduction to Probability – The Science of Uncertainty 将于明年(2014)二月开课,课时很长,或许将是一门很实的课程,讲师John Tsitsiklis在MIT讲授的概率论课程在MIT的OCW上也有公布。由于课程尚未开始,究竟课程质量如何,让我们拭目以待!

统计学公开课
目前MOOC平台上涌现了很多统计学的课程,课程图谱曾经对统计学的课程进行了收录,详细点击《统计学公开课大盘点》:
http://blog.coursegraph.com/统计学公开课大盘点

还有一门华盛顿大学的Mathematical Methods for Quantitative Finance也受到了广泛的好评,想要快速的过一遍基础数学的朋友不妨关注一下这门课程:

@钛合金蛙眼:内容包括微积分,线性代数,最优化再捎带一些金融知识,都是数据挖掘和机器学习数学基础(除了概率统计),老师也讲的很清楚,只可惜没有证书,UW开的几门课程都不错
@算文解字:搞statistical NLP自然要吃透了概率、统计和随机过程,但适当的微积分、线性代数和数值计算基础也很重要。没时间系统恶补?No problem! Coursera上推出了一门 Mathematical Methods for Quantitative Finance ,虽然原本针对金融,但8周的课程提供的浓缩版数学对NLPer也很实用。

以上是对数学基础课进行的简单汇总,难免会有缺失和遗漏,还望谅解。如果有朋友发现不错的数学基础公开课在上文中尚未收录,希望能够留言告知。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/数学基础公开课汇总

自学CS总结-by 要有光LTBL

这篇文章大半年前看过,原作者 要有光LTBL 同学也在课程图谱的群里,这两天群里讨论的时候想到了这篇文章,还花了一点时间扒了出来,所以征得作者有光大神的同意,转发和备份到这里,顺便给课程做了一个内部链接。以下系转载:

首先这只是我个人的总结,希望能提供大家一些好的建议或者想法,至于具体的可实施性和可推广性就不做任何保证了。。。

只是汇报一下我学了这些课,而且做一些个人的评价,并不代表着就等同于CS的学位了。。。额,操作系统编译等等都没上过这是必然不能比的。。。我只是上了这些课,而且这些课都属于CS的范畴而已。现在也只不过是拿到了offer所以汇报一下,肯定还要继续学的。。。

如果确实准备通过自学CS来找工作,那么最好先确保有足够的时间,能力和毅力。大忙人,作业写不完天天赶ddl的,数学恐惧症,编程恐惧症或者重度拖延症基本可以点叉了。而且请至少留出一年时间来学习吧。

我的背景本科是药学和心理,MS是Columbia的Biostatistics,然后工作拿到了。。。加州某小IT公司(也就是说你们大部分不会知道名字的公司)的offer,package勉强可以跟CS MS comparable这样。不过鉴于这里面有极大的运气成分所以没有任何可推广性和借鉴价值。然后我就进入正题说自学CS了。

我的背景算是统计吧,然后这样的话是要往machine learning的方向转,完全没必要我也不愿意做纯码农or Software Engineer,我投的基本上还是比较交叉的Data Scientist或Modeling Scientist这样。需要一定的programming能力但是要求并不深。除此之外可能会一些database或者machine learning会有帮助。。。我学其他的基本是个人爱好。其他专业的同学请看看就好了。。。而且申请OPT什么的时候还要考虑工作和学位的匹配程度。

首先一点,一定要是免费!或者基本免费。。。为什么不旁听的原因是我在医学部的校区离计算机系的主校区还是有相当距离的,所以我懒得去。。。不过现在网络上有极其丰富的教学资源,尤其是在计算机这方面更是非常丰富。这里我用的主要是三个平台:

1, Coursera,由Stanford的吴恩达(什么没听说过?英文名应该更熟叫Andrew Ng)和Daphne Koller教授创建,现在有200多面课程,基本上有100多所大学吧,其中CS的课应该就有50+。他们的特点是每门课都有一定的开放时间,而且有deadline,如果没有赶上开放时间就要等半年或者更长时间才能赶上下次开放。。。所以要上的话建议提前半年到一年看好所上课程的下次开课时间。(如果是某门课的first run那么很可能会推迟开课。。。)最后一般会给certificate,但是不会有人看那玩意的。。。编程作业会有,不过一般不会限定语言。课程跟大学内教授的相似,会更偏理论。课时基本上是5-8周,然后每门课的用时不定,2-4小时吧,如果有programming assignment会更多。

2, Udacity,cofounder是google一个教授,另一个也是stanford的。。。课非常flexible。只要材料全部post了那么什么时间上都可以,什么时间完成作业也都没要求,适合填充碎片时间(比如coursera的课很少的时候安排看Udacity),会更加注重应用,会有autodesk,nvidia的人去讲。并且我认为很适合学编程。用的Python较多,如果没注明的话默认就是python了,最近也有需要C/javascipt/HTML的课。缺点是他的视频是upload到Y2B上面的(虽然现在基本都开放下载了),所以需要翻墙。技术好的请翻墙的,技术不好的请搞一个V*P*N,一个月也没多少钱,跟你学到的知识相比绝对物超所值。课基本是7周,6周的正课,最后一周一般是叫点牛人然后来个展望这样。。。每周时间也要看programming的比重,不会很多。

3, 其他,主要是iTunes U或者翻译过来的网易公开课,相比而言视频的质量会非常差。。。没了。不是特别推荐。优点是网易公开课的话是有中文翻译的。这个一般相比,看视频的时间需要的较多。

然后我第一次上Coursera的时间是4.23,第一次上Udacity的时间是4.18,也就是说到现在也没有一年。这之前我的编程经验是:R,基本可以熟练运用。。。如果统计的同学R或者Matlab应该是肯定会一个的吧。。。然后后面我会按照我上的课的时间顺序给出评价。基本上5星是必选,4星是machine learning必选,3星是推荐,2星是一般,1星是不推荐。

0, MIT计算机科学导论,5星。请到网易公开课找,或者iTunes U等找英文资源。我上课的时间是大四。讲的内容基本是以python编程为主,并且会涉及到一定的OOC(面向对象)的内容,鉴于后面的课都跟OOC没什么关系所以这个课也还是挺好的。讲的也不错,相比之下harvard的CS101我就很不喜欢。。。

1, Udacity CS101 Intro to CS: 2.5星,作为入门课是很可以的,讲的也很适合美国人(对我的意思是他们比较笨),不过如果有了MIT的做基础这个基本就跟玩似的。。。有时间上了就好也不花什么精力。或者直接作为python入门也是不错的。内容基本是build a toy search engine。还算有趣。

2, Udacity CS262 Programming Language:5星,通过build一个javascript和html的interpreter可以对计算机语言的运行方式有一个更深层次的理解。尤其是对于各种syntax error之类的。而且他的成品基本上是Udacity所有课里面最exciting的,老师的声音也很好听。难度适中。有前两个的基础应该问题不大

3, Udacity CS212 Design of Computer Program: 5星,Google的Peter Norvig讲,基本讲完之后的感觉就是所有编程都没问题了。。。不过也很难,我当时每周的课都。。。比较困难。因为当时我是101,212,262还有machine learning同时上的,外加还要抽出一点点时间复习期末考试。。。每周基本上都能有一定的成果,第一周是poker,然后后面还有word game,game solver,grammar等等非常有趣的内容,极力极力推荐。难度,挺难的,不过收获也非常大。顺便这老师我特喜欢,也是Udacity的cofounder。

4, Coursera Machine Learning:4星,ML必须课需要说什么么。。。不过比较偏应用,会介绍Neural Network,但是对SVM基本上一带而过。还有recommendation system和别的一些较应用的内容。没有reinforcement learning的部分,unsupervised也比较浅。有PA,没有期末考试,一般人这课都能拿满分吧因为没有限制尝试的次数。。。用的语言是Octave/Matlab,难度一般。顺便Andrew Ng的奇怪的中国口音实在是听起来好爽。以及老师也是Coursera的cofounder,还经常来中国玩。

5, Coursera Software Engineer for SaaS: 1星,看情况应该是不再开了,随便说几句。课的视频直接就是上课录得,质量很差非常没有诚意,而且感觉就是一直在卖自己的教材的样子。课。。。因为上的太早了我完全没概念所以也基本没听懂。勉强做了前面几个PA实在忍不了了最后这个课我就基本没上。。。用的是Ruby on Rails。

6, Coursera Human-Computer Interaction: 2星,一般。没什么特别的意思。。。有些需要自己设计界面什么的对那种基本不感冒。而且后面居然开始讲统计和实验心理学一类的东西了我有些接受不了。。。

7, Udacity CS253 Web Application: 3星,挺不错的课,就是最后用GAP搭建一个非常简单的blog以及wiki。能够提供一些关于网页应用的insight(当然非常浅),做的东西也算是非常有意思的,另外用的平台是Google的GAP,国内的同学请准备翻墙。难度适中。而且最后一单元会谈到很多很实用的问题比如scale什么的。而且能给一些关于software engineering的idea。

8, Coursera Algorithms: Design and Analysis Part 1: 5星,这个是Stanford开的那版,不是Princeton的,后者我没上过不过据说更浅一些。老师很有激情语速也比较快,写字也很难看。。。不过看多了就习惯了。算法对CS是非常重要的,也是面试常考的。这个介绍的是基本概念big-O,还有sort和search。每周都有PA,基本是给input然后求output这样,不限定语言,不过python有时候会非!常!慢!难度适中

9, Coursera Cryptography I: 3星,Stanford的密码学,讲得很详细,而且也非常难。。。毕竟都是最最聪明的人在搞这些玩意。有很多非常奇妙的trick。不过难的同时同样的也很有挑战性。这个比较偏理论。有三星的自虐指数,难度是真的很难。

10, Udacity CS373 AI: Robotics: 3星,是Udacity另一位cofounder讲的,也很不错介绍了particle filter和A*什么的。缺点是一开始重复了两周的非常基础的probability的内容,不然的话还是可以考虑给4星的。。。难度适中。

11, Udacity CS387 Applied Cryptography: 也是密码学,一视同仁给3星。这个就很应用,理论的部分不多,而且cover的比Coursera的多(Coursera的毕竟只是part I, part II还遥遥无期。。)每单元最后都有challenge题目,是真的很变态。。。尤其是final的最后一题,设计得非常巧,有大概四五个环节要把很多学到的东西都用上。做的感觉就跟拿着藏宝图寻宝,然后一个一个解开线索一样。。。因为是密码学,所以必须的自虐指数三星,难度也真的很难。另外上这课有时候也需要翻墙。

12, Udacity CS215 Algorithms:3星吧,鉴于有上面的algo了这个也不是很难。。。算是巩固好了。介绍的重点是关于graph的,dijkstra什么的。。。老师很有趣,见过一面。难度适中。

13, Udacity CS258 Software Testing: 1星,我上过的Udacity最差劲的课,课内容非常少,而且总之这个现在也用不到。我反正是有时间就上了。唯一的收获是中间写了一个数独的solver,然后我自我感觉写得很不错。。。导致后面我对数独完全失去兴趣了。。。

14, Coursera Quantum Mechanics and Quantum Computation:2星。量子。。。啊这些其实没什么关系上纯是兴趣因为密码说过量子计算机可以破RSA。。。然后非常难,非常虐。所以就不推荐了。。。我现在也只能记住最基本的qubit的共轭。。。

15 Stanford Machine Learning: 4星。是iTunes U上面的,Andrew Ng在斯坦福的讲课视频,相比前面coursera的就更理论,虽然没有NN的内容,但是svm讲得很细,还有ica和reinforcement的部分。总之算是巩固基础,然后相辅相成。同样我还是很喜欢吴恩达老师的口音!

16, Coursera Web Intelligence and Big Data: 1星。大部分很浅,不喜欢。而且考试非常无厘头。不过基本上介绍得很全面,包括file system也涉及到了。PA。。。比较傻逼。不过也不是很花时间,所以还好。

17, Udacity CS222 Differential Equation:3星,在学校基本算是没学过微分方程所以挺遗憾的。。。这个课也有涉及很多实际问题所以算是有趣。画的图也很好看。。。总之最后的感觉就是世界真和谐,世界真奇妙,世界真美好。而且用matplotlib,需要的同学可以借鉴一下。

18, Coursera Introduction to Computational Finance and Financial Econometrics:2星,本科难度的课,基本上很傻逼。。。前面70%都是在复习什么矩阵啊概率啊之类的。。。用的是R。会有一些time series的东西。。。还有一点关于股票的,不然根本就是白上了。。。

19, Coursera Probabilistic Graphical Models: 3.5星,和Machine Learning的关系也没有那么大,还不算一定必选。老师是Coursera的另一位cofounder,内容是研究生级别的,很难,PA也很难。我现在有些概念也没完全理解透。。。而且内容很多。借用weibo上老师木的评价:“别的都是讲的术,图模型讲的是道”。自虐指数三星。我当时经常周六下午做这个PA做的死去活来。。。

20, Coursera Neural Networks for Machine Learning: 4星。现在Deep Learning的领军人大牛hinton亲自讲授。内容有点。。。晦涩,但是理解之后概念还是不错的。PA什么的难度也适中。不算特别变态。

21, Udacity CS313 Theoretical Computing:2.5星,主要讲关于NP的,这个topic还是蛮有趣的。Programming的比重也不大,应该可以轻松上完。。。因为确实跟CS,主要是找工作的话关系没那么大所以到不了3星,何况NP后面还有5星课程会cover到。。。

22, Udacity CS259 Software Debugging: 2星。主要是Coursera的课都上完了没事就上了。内容如题。。。其实也可以,但是我肯定不是这么debug的。。。

23, Udacity CS271 Intro to Artificial Intelligence: 4星。Udacity当年的第一门课。两个cofounder讲。对于ML,NLP,CV,机器人,game theory等都有所涉及。看完了我突然觉得。。。尼玛原来我感兴趣的这些全都是AI啊。。。不难,没有PA,花点时间就好了。

24, Coursera Algorithms: Design and Analysis Part 2: 5星。必须的五星,之前的part 2,内容是greedy algorithm,dynamic programming和NP。涉及的东西很多,PA也变态了很多python真的特别慢。在此力荐pypy。没什么可说的算法是必须看的。而且这俩part加起来本科毕业生的水平至少就有了。。。

25, Coursera Interctive programming in Python:2.5星,用他们自己建的一个GUI去遍图形界面,也算是python入门课。很简单,不过如果是machine learning的话用处不大。。。(这门课当是因为没时间只是看了视频,也没有做作业,没拿certificate)

26, Coursera: Intro to Database: 3星 现在搬到Class2Go上面去了貌似。介绍数据库,包括一些xml啊json什么的还有nosql的部分。当然大头是SQL,因为考SAS证的时候学过了,所以也就看看。不过数据库对于big data什么的还是很重要的(准确地说nosql数据库还有DFS什么的很重要。。。),所以应该还是看看比较好。

27, Coursera Computing for Data Analysis: ?星,简单的但是比较系统的介绍R语言。看各位的需要了。

28, Coursera Game Theory: 2星,感觉。。。好奇怪的,感觉什么都没说就上完了,最后就记得一个词叫纳什均衡了。。。而且很浅,尤其是rational的假设令我感到很不安。。。当然我会说我选这课的时候根本不知道Game Thoery是博弈论。。。我还以为是什么游戏之类的呢。。。

29, Coursera Image and video processing:3星,介绍基本的关于image processing的东西,挺好的。有时候挺好奇PS里那些效果是怎么办到的,就看这个就好了。。。当然那部分貌似跟PDE有关所以其实我基本没看懂。。。

以下课程是我在上的还没上完。。。

30, Udacity CS344 Parallel Computing:2.5星,用的是build on C的CUDA。因为主要是为了提高运算速度所以用C还是可以理解的。因为不熟悉C。。。所以上成了一个傻逼啊!不过有些概念学一下还是很有助于开阔眼界的。现在Program GPU也很是流行的样子。。。而且我觉得挺难,主要是C完全不熟。

31, Coursera Linear and Discrete Optimization:2星,有很弱智的PA,基本就是填空题。然后就是线性规划嘛。。。主要cover了simplex算法等。也不是很花时间。

32, Coursera Natural Langauge Processing:看在是鄙校的份上违心给个3.5星吧。。。这个课主要是先期准备不足所以一开始很乱套导致扣了很多印象分。讲的目前为止也中规中矩,PA难度也还可以。不过那些东西感觉都太经典了。。。是不是有点过时了啊。。。NLP基本也和ML关系很紧密,所以个3.5也不算很过分。。。

33, Coursera Social Netwrok Analysis: 3星,社交网络诶很火的,虽然讲的似乎也比较浅,而且老师没有照片上那么好看。。。

34, Udacity CS291 Interactive 3D Graphics:2.5星。用Threejs吧,build on javascript。恩,想想这是魔兽会用到的技术我就觉得很有动力。。。

下面这个课我没上过:

??: Coursera Complier,所以也没法打分,用的应该是C,目测比较难但是上过的同学感觉收获还是很大的。。。不过因为python不用compile所以我也没什么概念。。。

总结:必上:MIT的导论,Udacity 262, 212,Coursera上斯坦福的算法。还有Andrew在Coursera和Stanford上面的两版Machine Learning。

另外我们有个关于Udacity和Coursera这些公开课的QQ群:244689946 (课程图谱)

最后的废话:感谢Andrew Ng,Peter Norvig等人的努力,没有他们就不会有这么多这么好的免费资源给我们。我的偶像是Steve Jobs和Walt Disney,他们不仅改变了我,也改变了世界。Andrew他们还不算,因为虽然这些公开课改变了我,但是还没看到他们改变世界,不过他们都还活着。。。所以我觉得肯定会看到那一天的。另外感谢他们给这么好的机会和资源,我觉得如果可能的话我会贯彻终身学习,坚持一直学习下去的。。。

以及感谢太傻的任老师虽然把我搞出国服务就算结束了但是一直还在帮我。。。发各种信息给我(虽然大多不靠谱),但是Udacity和Coursera也是他介绍的。。。我后面找工作的position大部分也是他发给我的。。。虽然造就了超低的回复率但是至少我要去的公司也是包含在里面的。。。

好吧再加一句太傻的服务基本上似乎是不太好的,这真的不是广告啊你们妹的,有这么广告的么。。。只不过这个老师是真的对我不错。。。

源地址: http://blog.renren.com/GetEntry.do?id=900262844&owner=232614149