标签归档:统计学

Deep Learning Specialization on Coursera

Coursera课程下载和存档计划五:其他课程资源

本期整理了手头剩下的其他课程,限于个人精力有限,不整理归类了,请自取。这些公开课资源一些来自于之前课程图谱群内朋友的或者微博上的朋友的分享,另外一些这里做了下载补充,主要针对Coursera旧课程平台的课程进行备份和分享,对于一些已经迁移至新课程平台的课程,希望大家直接去Coursera新课程平台上去上课,这样会有更好的学习体验。最后特别说明的是,课程网盘资源仅供个人备份学习使用。

关于“Coursera课程下载和存档计划”,请参考:

  1. Coursera Downloader 下载工具
  2. Coursera课程速查表
  3. 机器学习 & 自然语言处理 & 推荐系统 & 数据挖掘相关公开课
  4. 计算机科学基础公开课

以下课程资源备份,相关信息我们也会同步到“Coursera Archive”项目上去:

29. 计算机科学入门课程: Computer Science 101

链接: http://pan.baidu.com/s/1dEXhOU9 密码: 6efk

30. 社交网络分析: Social Network Analysis

链接: http://pan.baidu.com/s/1kVheUMV 密码: pr7d

31. 台大概率课程:機率

链接: http://pan.baidu.com/s/1mis8w8C 密码: gqun

32. 科学计算:Scientific Computing

链接: http://pan.baidu.com/s/1mhN0sJI 密码: iiyn

33. 高性能科学计算:High Performance Scientific Computing

链接: http://pan.baidu.com/s/1kUP4jUB 密码: n8b5

34. Python入门课程:Learn to Program: The Fundamentals

链接: http://pan.baidu.com/s/1eSlZbR8 密码: fwr6

35. 函数式编程:Programming Languages

这门课程直接分享有问题,压缩了一下分享出来:

链接: http://pan.baidu.com/s/1c1AjzNE 密码: 8hb2

36. 线性代数应用课程:Coding the Matrix: Linear Algebra through Computer Science Applications

链接: http://pan.baidu.com/s/1cHVpsa 密码: qb4v

37. 异构并行编程 Heterogeneous Parallel Programming

关键词:GPU,CUDA

链接: http://pan.baidu.com/s/1pLznR2j 密码: taxa

38. 博弈论:Game Theory

链接: http://pan.baidu.com/s/1bFDh9s 密码: etxp

39. 大数据暑期学校:The Caltech-JPL Summer School on Big Data Analytics

链接: http://pan.baidu.com/s/1gfHffn9 密码: wfc3

40. 大数据课程:Web Intelligence and Big Data

链接: http://pan.baidu.com/s/1skWd9Nn 密码: dikb

41. Audio Signal Processing for Music Applications

链接: http://pan.baidu.com/s/1i5vwuQp 密码: 7di2

42. 图像和视频处理: Image and video processing: From Mars to Hollywood with a stop at the hospital

链接: http://pan.baidu.com/s/1i5NMCvj 密码: jq55

43. 离散优化: Discrete Optimization

链接: http://pan.baidu.com/s/1i49ZlgL 密码: cy2u

44. 线性优化和离散优化:Linear and Discrete Optimization

链接: http://pan.baidu.com/s/1gf7BFEz 密码: q5q6

45. 计算机视觉基础:Computer Vision: The Fundamentals

链接: http://pan.baidu.com/s/1qYgUX1i 密码: a2gm

46. 计量金融中的数学方法:Mathematical Methods for Quantitative Finance

链接: http://pan.baidu.com/s/1pKYP1H5 密码: eu5z

47. 模型思维:Model Thinking 模型思维

链接: http://pan.baidu.com/s/1nvvomQt 密码: x8g9

48. 统计学 & R语言:Statistics: Making Sense of Data

链接: http://pan.baidu.com/s/1c0utwM 密码: bs3b

49. 数字信号处理:Digital Signal Processing

链接: http://pan.baidu.com/s/1slgmZjJ 密码: wc9u

50. 逻辑导引:Introduction to Logic

链接: http://pan.baidu.com/s/1jIffsKQ 密码: fdm2

51. 软件定义网络:Software Defined Networking

链接: http://pan.baidu.com/s/1qXE4DIk 密码: bw62

52. Principles of Reactive Programming

链接: http://pan.baidu.com/s/1skSFMOl 密码: ht3j

53. 创业工程:Startup Engineering

链接: http://pan.baidu.com/s/1c2AzEuc 密码: j8jw

54. 台湾大学:中國古代歷史與人物--秦始皇

链接: http://pan.baidu.com/s/1boD9nWV 密码: fb99

55. 人类简史:A Brief History of Humankind

链接: http://pan.baidu.com/s/1mibD2vY 密码: pbx6

最后再推荐一个神器:coursera-dl-all

Extend the Coursera Downloader by downloading quizzes and assignments (and hopefully forum posts soon!). Uses coursera-dl in the process.

作为Coursera Downloader的扩展,可以下载问题和作业,今晚才发现,有点迟了,感兴趣的同学可以试用一下,这确实是一个很好的补充。

注:原创文章,转载请注明出处“课程图谱博客”:http://blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/coursera课程下载和存档计划五

2014年4月份MOOC部分热门课程汇总

近期MOOC的内容呈现出爆炸式的增长,各式各样的课程让人应接不暇。本文将对各大平台4月份预计比较热门的课程进行简单的汇总,各位可以根据自身的需求挑选合适的课程。

Coursera平台:

1. 美国西北大学的Everything is the Same: Modeling Engineered Systems 将于4月6日开课。本课主要讲述一些简单的物理工程实例,对物理学、工程学感兴趣的朋友可以关注。同时这门课程中会穿插Matlab和Python的内容,适合懂得一点编程的朋友。

2.马里兰大学的Exploring Quantum Physics将于4月7日开课,本课讲述的是量子物理。目前讲述量子物理方面的课程还不多,这门课或许是个不错的选择

3. 约翰霍普金斯大学的Getting and Cleaning Data将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分

4.约翰霍普金斯大学的R Programming将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分,R语言日益成为数据分析领域的首选工具,本门课程可以作为对这个工具入手的入门课程。

5. 约翰霍普金斯大学的The Data Scientist’s Toolbox将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分,主要介绍了目前数据分析中会经常用到的工具,例如:Github,  MarkDown, R Console, R Studio等等

6. 上海交通大学的“唐诗宋词人文解读”将于4月8日开课。课程从喜闻乐见的唐诗宋词入手,触摸一段历史与一群文人的体温,领悟人生旅途的趣味和智慧。

7. 上海交通大学的“媒介批评:理论与方法”将于4月8日开课。“媒介批评”是现代大众传播学的重要分支,简单而言,就是批评媒介,是 对大众传播媒介本身进行批评,属于应用传播学的研究领域。

8. 密歇根大学的Programming for Everybody将于4月10日开课。在众多编程基础课中这门课属于新的成员,适合编程零基础的朋友。

9. 慕尼黑大学的Competitive Strategy将于4月11日开课:

@ototsuyume:

其实就是简单易懂的博弈论入门,课程量少老师讲得作业难度不高而且每道题都有说明,大概是大学里面公共通选课的难度,有空可以看看

10.科罗拉多大学博尔德分校的Physics 1 for Physical Science Majors将于4月14日开课。本课属于比较传统的大学物理,之前获得了不错的反响

11.慕尼黑大学的Introduction to Mathematical Philosophy将于4月14日开课。在现代的哲学研究中越来越多的需要思考很多底层的问题,在这期间免不了需要思考很多数学层面的问题,本课推荐给对数学或哲学领域感兴趣的朋友。

12.匹兹堡大学的Warhol将于4月21日开课。出生于匹兹堡市的Andy Warhol是20世纪最伟大的艺术家之一,波普艺术的创始人,对当代的艺术和文化产生了巨大的影响。本课将介绍Andy Warhol的生平和作品,让大家一睹大师的风采。

13.香港中文大学的“中國人文經典導讀”将于4月24日开课。本課程是以四堂演講的方式,分別討論中國文化的四個主要面向,彙文學、歷史、哲學、藝術于一爐。每一個主題以一篇或兩篇經典文本爲基礎,指導學生如何精讀作品,學習以欣賞和批判的雙重角度重新解讀經典,同時獲得對中國文字的陶冶和享受。它本爲大學一年級學生所設,但不限於中文系本科專業,希能為學生鑒賞中國傳統文化開啟新的視野。

14.瑞士洛桑联邦理工学院(EPFL)的Functional Programming Principles in Scala将于4月25日开课。本课之前几轮获得了极高的评价,主要通过Scala语言讲述函数式编程的思想。本课的讲师正是Scala语言的发明人。

15. 斯坦福大学的Algorithms: Design and Analysis, Part 1将于4月29日开课:

@超級現實的超現實理想主義者:

这门课对我的影响非常大,直接改变了我的思维方式,并且为日后的学习打下了很好的基础。

edX平台

1. MIT的Street-Fighting Math将于4月8日开课。如同街头打架一样,不论你使用什么招式,打架的唯一目的就是寻求胜利。各位接受了多年“严谨”的数学教育,不妨感受一下“Quick and Dirty”的数学方法。

2.哈佛大学的Justice将于4月8日开课。这门“公正”课早在MOOC出现之前就已经红遍国内互联网,想要重温或者学习这门经典课程的朋友不妨关注一下这门MOOC形式呈现的课程。

3.京都大学的The Chemistry of Life将于4月10日开课。该课属于化学和生物的入门课程。

学堂在线:

1. 清华大学的组合数学将于4月10日开课。随着计算机科学的发展,组合数学在这段时间里获得了极大的发展。不同于传统数学领域侧重于“连续”层面,组合数学解决的是“离散”层面的问题。本课将从基础的排列组合开始,逐步深入了解计数问题的不同解决思路,通过对现实生活中计数问题的演绎和学生们共同体会组合计数问题不断抽象深入的挖掘过程,引导学生共同感受数学知识的精妙,从而深入理解组合数学对计算机理论发展的推动作用。

2. 加州大学伯克利分校的云计算与软件工程—第一部分将于4月21日开课。本课的讲师是软件工程和计算机科学领域的大牛,课程主要通过Ruby on Rails等目前热门的互联网开发技术阐述诸如“云计算”、“敏捷开发”等软件工程领域热门的主题。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接: http://blog.coursegraph.com/2014年4月份mooc部分热门课程汇总

数据分析公开课汇总

数据分析是如今非常热门的话题之一,课程图谱为此简单整理一下目前(2014年初)在MOOC平台上有关数据挖掘方面的公开课程。
Coursera

1.  Johns Hopkins University的Data Analysis 该课通过R语言讲授数据分析的技巧:

@Cloga在路上:很好的一门课程,用R为工具讲了数据分析挖掘的一些算法和实例。

2. University of Washington的Computational Methods for Data Analysis 该课为课堂录像,通过MOOC的形式进行组织,讲师Nathan Kutz讲课生动、幽默,但是该课不足之处是课程不提供证书激励且几乎没有课程工作人员参与讨论,属于自助性质的课程。

3. University of Washington的Scientific Computing:科学计算是很多工程应用领域的基础课程,该课的讲师同样为Nathan Kutz,课程形式与上一门Computational Methods for Data Analysis基本一致。

4. University of Toronto的Statistics: Making Sense of Data

@Mavlarn008:就像这门课的标题“making sense”一样,这门课最好的地方就是让你对统计有”感觉”。虽然讲的比较简单,但是对于理解这些概念非常有用。 最后那个大胡子还自弹自唱一首他自创的有关这门课的歌,也很有意思。

5. University of Washington的Introduction to Data Science

@Cloga在路上:很好的一门课,尤其对于我这种初学者,老师讲的面很广,涉及了数据科学的很多方面。
不足之处是课程内容过多有些内容讲的很匆忙,比如数据可视化这个部分,大家普遍反馈讲的有点水,Graph那部分也有点水。
比较好玩的是,课程结束后Bill好像有些事情,拖了一段时间才给出分数,大家在课程论坛上各种吐槽,无比欢乐。

@伟伟酱说:正如老师开始所讲的,这门课的目的只是让你成为advanced beginer,课程内容涵盖了数据库(SQL,NoSQL),MapReduce,基本的数值分析,机器学习,数据可视化。类似于另外一门课Web intelligence and big data,两者都应该算是入门型课程,学生想要深入学习的话可以选择其他专门的课程。
有人认为老师讲课枯燥,你总不能指望每个老师把数学课讲的有历史课那么有趣吧~

@钛合金蛙眼: 希望和失望并存。。。课程内容结构很好,讲的不好;作业很赞,对有一定基础的人不难,但入门的同学可能还是有困难。如果只是想粗浅了解课程各个topic的,跟着做作业就不错,想深入还需自学

6. Columbia University的Big Data in Education:该课讨论的是将数据分析的技巧运用于教育领域

7. Johns Hopkins University的Computing for Data Analysis

@宋鑫要学习:想入门R语言的可以听听。我自己之前有看过一些R的入门书籍,但是总感觉云里雾里,这门课让我感觉自己摸着点门道

@Puriney:这门课更确切说确实是R语言指南,很多实用并且系统地把R用法娓娓道来,没有啥算法,因此可能有人觉得不象一门综合大学的课程而更象蓝翔技校般的技能课。我想跟当时课程开课有一定关系,当时我记得是这门4周课时的课(很精简了)先开(Roger Peng主讲),结束之后马上接着便是Roger Peng的好基友Jeff Leek (他们都是http://simplystatistics.org/博客的共同博主)讲的Data Analysis。Jeff的这门课就更加复杂,作业里有更多计算成分在,就不那么“技校”了。 p.s. 这是我唯一一门上完不那么费脑力的课(相比那些算法的课)。Jeff的这门我没有坚持到底,当时我很讨厌“互相批改”的评分制度(如果没记错)

@要有光LTBL:R讲的挺好的,一直在用但是知识体系并不是很系统。这门课还是讲得不错的。。。

@wzyer:这门课就应该叫作R使用手册。全是R的语法与应用,有些让我失望。语法什么的太琐碎,很容易遗忘,放到课上讲太多语法个人以为不妥。

 

8. Stanford University的StatLearning: Statistical Learning:名著The Elements of Statistical Learning: Data Mining, Inference, and Prediction(ESL)的作者Trevor Hastie和Rob Tibshirani开设的课程,本课的配套教材An Introduction to Statistical Learning: with Applications in R在美国亚马逊上获得了极高的评价,在课程中该教材将会免费对外开放

9.Duke University的Data Analysis and Statistical Inference:该课将会由R语言讲授统计学和数据分析方面的内容,欢迎关注

Udacity
Udacity近期与企业界合作推出了一些数据分析领域的课程,课程内容本身对外公开免费,但如果需要获得证书以及专门的在线辅导的话则需要支付一定的费用。
1. Introduction to Hadoop and MapReduce:

@ziyoudefeng: 这门课程太简单了,google搜索 mapreduce PPT 出来的这些PPT,看上几个也都抵上这三节课了。不过,总共也就3节课,听听也无妨。讲的内容很初级,小白用户可以网上的讲义加视频一起学习!

2. Introduction to Data Science

3. Data Wrangling with MongoDB

4. Exploratory Data Analysis

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接:http://blog.coursegraph.com/数据分析公开课汇总

统计学公开课大盘点

统计学博大精深,用途广泛,是一门非常重要的基础课程。在接触了一些统计学公开课后,发现网络上还有很多的免费的在线统计学课程可以用来学习和复习相关的知识点,只是缺乏一些整理和汇总。之前课程图谱微博做了很多课程的推荐,但是发现微博上信息散落的很凌乱,不系统,所以决定在这里做一些系统的课程资源整理和汇总。第一期就选定统计学,同时也欢迎大家补充相关的没有覆盖到的课程资源,供更多的同学学习和参考。

1、Udacity的“Introduction to Statistics(统计学导论课程)

入门级课程,强烈推荐。课程对学生的数学基础要求很小,可以认为是零基础学习统计学的好课程,授课老师是斯坦福教授Sebastian Thrun,他是Udacity的创始人之一,同时作为Google Fellow, 他创办了Google X实验室,主导了Google无人驾驶汽车以及Google眼镜等革命性产品。课程本身深入浅出的介绍了统计学的大多数基本概念,只要认真回答每节课的小问题,同时认真完成homework, 包括用python写个小的统计程序,应该会大有收获。

MOOC学霸 @wzyer 对这门课程的评价是:课程本身内容很不错,涵盖了统计基本的知识点。不过也许是Udacity风格的问题吧,听完之后感觉有些不够系统。也许这门课主要面向的是无基础的人吧。

Udacity官方也提供了这门课程的视频下载链接:https://www.udacity.com/wiki/st101/downloads

另外Udacity也在Youku上建立了官方频道,这门课程对应一个专辑:Udacity公开课:ST101统计学入门 ,貌似视频不全,但是有翻译。

2、可汗学院的“Probability and Statistics(概率与统计)

入门级课程,强烈推荐。可汗老师亲自在白板上边写边讲,通俗易懂,另外一个就是它的配套练习系统了,没有一定的正确率是不让你通过的。网易公开课虽然有这门课的视频,但是缺少了练习,好像就丢了魂。虽然以前在学校里学过概率和统计,特别是后者,感觉很多基本概念没有在脑子中留下印记。这门课刚好补回了很多基本的概念。

网易公开课上将这门课程分为两个课程“概率”和“统计学”提供在线观看和视频下载,并且视频有相应的翻译,如果能再在可汗学院官方网站上做一下练习,效果会很不错:

2.1 可汗学院公开课:概率
可汗学院的概率课程通过各种生动的例子,由最基本的概率问题讲起,逐步深入讲解了概率中的一系列概念及问题,主要内容包括独立事件,相依事件,随机变量,排列,组合,概率密度函数,二项分布,期望值,大数定律以及大量的实例

2.2 可汗学院公开课:统计学
这门课是统计学入门课程,将涵盖统计学所有的主要知识,包括:随机变量、均值方差标准差、统计图表、概率密度、二项分布、泊松分布、正态分布、大数定律、中心极限定理、样本和抽样分布、参数估计、置信区间、伯努利分布、假设检验和p值、方差分析、回归分析等内容。

3、edX的伯克利统计学课程三部曲-描述统计学,概率,推荐推断

3.1 伯克利大学统计学导论-描述统计学:Introduction to Statistics: Descriptive Statistics

蒋勇NLP同学的评价: 这门课是我拿到第一张MOOC的证书,berkeley的这位女老师把统计学导论课程分为三部分,这个是第一部分,内容很简单,通过很容易,主要就是介绍统计概率最基本的知识。edx的MOOC入门课,推荐!

课程图谱花了一些时间体验了这门课程,总得评价是:

统计学博大精深,而这门伯克利统计学的入门课程可以归结为5个字:功夫在课外,或者说功夫还是要花在伯克利原生的统计学课程上。edX上的这门描述统计学课程基本上只是做了一些概括介绍,所以总共只有五周课程,而且每周课程只有2-3个视频,开始我还比较诧异,后来做练习时发现不是这回事,因为课后的练习或者作业多指向伯克利自己的统计学课程,而这门课程被 P.B. Stark教授做成了一个在线的统计学课程项目:SticiGui, 而这个在线课程上的视频,都是其在伯克利大学的统计学授课视频,长度比这里长多了。很多时候需要花时间学习这些课程再回头来做edX的作业。

edX上的这门课程的老师是Ani Adhikari ,标准的英式英语口音,貌似是P.B. Stark教授的博士生或者同事,介绍的内容很简单,主要包括直方图,均值和中位数,标准差,标准正态分布和z值,回归问题等等,视频多是做个引导,如果之前没有相关的统计学知识,需要去SticiGui上自学一下。这一点上我觉得课程做得不太好,没有在edX上形成一个闭环,虽然SticiGui非常值得推荐,但是课程的体验大打折扣。相对来说,Kehan学院的概率与统计课程以及Udacity上的统计学导论课程的体验就非常好了。

3.2 伯克利大学统计学导论-概率:Introduction to Statistics: Probability

蒋勇NLP同学评价:统计学导论的第二门课程,看课程名字就知道主要讲概率,如果说统计学导论1内容是高中或者大一上课程,这门课应该是大一下课程吧,课程内容比国内的数理统计课程要多,quiz有尝试次数限制。不得不说edx的UI做的真心赞,就是deadline不好把握,一不小心时间就过了。。。

3.3 伯克利大学统计学导论-统计推断: Introduction to Statistics: Inference

该课程将在7月份开课,值得期待和关注。

4、加州伯克利大学统计学系的在线统计学课程项目:SticiGui

“Statistics means never having to say you’re certain”

这个课程项目包括文本课程、伯克利大学课堂视频以及仿真模拟等,而且覆盖的内容广泛,项目的代码和文档可以在github上找到:SticiGui GitHub。可以认为这门课程是上面edX统计学导论三部曲的进阶或高阶课程,课程视频来源于 P.B. Stark教授的授课视频,并且以伯克利统计学的赫赫声名,相信完成这门课程后收获会非常之大。

5、国外一个统计学在线学习网站:Online Statistics Education: An Interactive Multimedia Course of Study

这是在学习可汗学院的概率统计课程时老师提到的网站,体验了一下,非常不错,包括文本(web, pdf和mobile epub版本等等),视频,问答和模拟仿真等,值得收藏。

6、斯坦福大学OpenEdx平台上的医学统计学公开课:Statistics in Medicine

@蒋勇NLP同学6月12号推荐:斯坦福的Statistics in Medicine今天开课,内容主要是统计分析的一些知识。包括:统计学概述、概论论、统计推断、p值检验、回归分析等,跟berkeley的三门统计学导论相比,侧重点应该不一样

7、加州大学伯克利分校:公共健康-数据统计分析

与上面这门医学统计学课程相似的是,在网易公开课上有一门加州伯克利大学的“公共健康-数据统计分析课程”,虽然面向的是医学和健康领域,但是主要讲的还是统计学的基础方法。值得称道的是,网易公开课上提供了部分课程的翻译和视频下载:

本课程涵盖了数据统计分析的基础内容,共四十二节课。Nicholas P. JEWELL教授主要采取ppt授课方式,让同学们更容易看到合记住知识点。并且复习起来非常方便。

8、Coursera上普林斯顿大学的“Statistics One(统计学上)

该课程去年在Coursera上开过一轮,反响很好,主讲统计学的基础知识,作业实验全部用R语言,所以关心R语言的同学也可以考虑这门课程。

9、Udacity的“Elementary Statistics(基础统计学)

从课程大纲来看这门课程难度不大,应该属于入门级的统计学课程。

10、Coursera上多伦多大学的“Statistics: Making Sense of Data

这门课程从大纲来看讲得比较基础,但是比较注重培养数据分析的感觉,用的也是R语言,并且有专门的章节讲解R语言,推荐关注统计和关注R语言的同学考虑。

11、Coursera上卫斯理大学的“Passion Driven Statistics

不知道怎么翻译了,难道是“激情驱动的统计学”?不过从大纲来看,这门课程更关注统计学在数据分析上的应用,使用的统计学软件是SAS统计分析工具,关注SAS的同学也可以关注这门课程。

12、网易公开课上的“哈里斯堡社区大学公开课:统计学入门

看了一下大纲,这门课程还是相当基础的,属于入门级的统计学课程,网易公开课一如既往的提供翻译和视频下载,功德无量,不过这门课程正在翻译中。

课程介绍:本课程的话题包括描述和总结图表及数字数据,概率,分销,参数估计,重要性估计,以及二变量数据探究。

13、网易公开课上的“统计学:数据图像化

这门课程应该属于TED的一个“数据可视化”系列演讲,称不上课程,但是看了几个视频之后,绝对会加深你对统计学的认识和兴趣。

通过优雅、生动的演讲,TED的演讲者们将海量的数据拆解,让数据变得变得简单易懂,甚至令人兴奋。这门课程将教会你如何将数据视觉化,优雅、引人入胜地呈现这些复杂的统计结果。

14、网易公开课上的“巴黎高等商学院公开课:决策统计学

这门课程应该属于统计学应用的范畴,虽然是法语讲得,但是觉得有翻译,应该还能看看,不过尝试看了一下视频后,发现PPT也是法语,所以比较适合学习法语同时对统计学感兴趣的同学。

课程介绍:这门课帮助学员熟悉帮助企业进行决策的统计方法的原理和原则。课程包含:海量数据组织/数据总结方法或者数据视图化方法。这种方法会帮助学员更好理解课程所研究理论。数据处理方法经常被用到人力资源管理和经济市场中用来帮助进行总结和决策。针对现实对象进行数学建模理论,在金融市场、会计和经济中经常会用到这种措施。

15、Coursera上的中文课程 “概率

由台湾大学叶丙成教授授课,8月份开课,课程简介很有意思:“我们的作业将搭配台大电机系所开发的多人竞技线上游戏方式,让同学在游戏中快乐的学习,快速培养同学们对于概率的洞察力与应用能力”

16、Coursera上约翰霍普金斯大学推出的”Mathematical Biostatistics Boot Camp

面向生物统计学,主讲概率和统计的基础知识:Topics include probability, random variables, distributions, expectations, variances, independence, conditional probabilities, likelihood and some basic inferences based on confidence intervals.

17、上一门课程的姊妹课:Mathematical Biostatistics Boot Camp 2

主要包括假设检验,卡方检验,Fisher精确检验,非参数检验等更深入一些的统计学知识点:Learn fundamental concepts in data analysis and statistical inference, focusing on one and two independent samples.

目前主要关注的是国外统计学公开课资源,如果你还有其他不错的统计学公开课资源和链接,欢迎推荐到这里,这里会进一步丰富和整理相关的课程信息。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/统计学公开课大盘点