标签归档:高级机器学习

Deep Learning Specialization on Coursera

Coursera专项课程推荐:谷歌云平台上基于TensorFlow的高级机器学习专项课程(Advanced Machine Learning with TensorFlow on Google Cloud Platform Specialization)

Coursera近期刚刚推了一门新专项课程:谷歌云平台上基于TensorFlow的高级机器学习专项课程(Advanced Machine Learning with TensorFlow on Google Cloud Platform Specialization),看起来很不错。这个系列包含5门子课程,涵盖端到端机器学习、生产环境机器学习系统、图像理解、面向时间序列和自然语言处理的序列模型、推荐系统等内容,感兴趣的同学可以关注:Learn Advanced Machine Learning with Google Cloud. Build production-ready machine learning models with TensorFlow on Google Cloud Platform.

课程链接:http://coursegraph.com/coursera-specializations-advanced-machine-learning-tensorflow-gcp

五门子课程分别是:

1、基于TensorFlow的端到端机器学习(End-to-End Machine Learning with TensorFlow on GCP)

http://coursegraph.com/coursera-end-to-end-ml-tensorflow-gcp

这门课程将首先回顾一下谷歌云平台上的TensorFlow机器学习专项课程系列(Machine Learning with TensorFlow on Google Cloud Platform Specialization)的相关内容。 回顾这些内容的最佳方法之一是就是使用学到的概念和技术。 因此,这门课程被设置为研讨会,在这个研讨会中,学员将在谷歌云平台上使用TensorFlow进行端到端机器学习。先决条件:基础的SQL知识,熟悉Python和TensorFlow。

In the first course of this specialization, we will recap what was covered in the Machine Learning with TensorFlow on Google Cloud Platform Specialization. One of the best ways to review something is to work with the concepts and technologies that you have learned. So, this course is set up as a workshop and in this workshop, you will do End-to-End Machine Learning with TensorFlow on Google Cloud Platform Prerequisites: Basic SQL, familiarity with Python and TensorFlow

2、生产环境机器学习系统(Production ML Systems)

http://coursegraph.com/coursera-gcp-production-ml-systems

在该系列的第二个课程中,将深入研究生产环境中高性能机器学习系统的组件和最佳实践。 先决条件:基础的SQL知识,熟悉Python和TensorFlow。

In the second course of this specialization, we will dive into the components and best practices of a high-performing ML system in production environments. Prerequisites: Basic SQL, familiarity with Python and TensorFlow

3、Image Understanding with TensorFlow on GCP(通过TensorFlow进行图像理解)

http://coursegraph.com/coursera-specializations-advanced-machine-learning-tensorflow-gcp

这是谷歌云平台高级机器学习专项课程系列第三课:通过TensorFlow进行图像理解。在这门课程中,首先将介绍使用卷积神经网络构建图像分类器的不同策略。其次将通过数据增强,特征提取和超参数调优来提高模型的准确性,同时避免过度拟合数据。学习过程中还将研究实际出现的问题,例如,当图像数据不足时如何处理问题以及如何将最新的研究成果纳入我们的模型。最后在这门课程的实践平台上,学员将在不同的公共数据集上构建和优化自己的图像分类器模型。先决条件:基础的SQL知识,熟悉Python和TensorFlow。

This is the third course of the Advanced Machine Learning on GCP specialization. In this course, We will take a look at different strategies for building an image classifier using convolutional neural networks. We’ll improve the model’s accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting our data. We will also look at practical issues that arise, for example, when you don’t have enough data and how to incorporate the latest research findings into our models. You will get hands-on practice building and optimizing your own image classification models on a variety of public datasets in the labs we’ll work on together. Prerequisites: Basic SQL, familiarity with Python and TensorFlow

4、Sequence Models for Time Series and Natural Language Processing(面向时间序列和自然语言处理的序列模型)

http://coursegraph.com/coursera-sequence-models-tensorflow-gcp

谷歌云平台高级机器学习专项课程系列第四课:面向时间序列和自然语言处理的序列模型。这门课程将主要介绍序列模型及其应用,包括序列模型结构概览以及如何处理可变长输入。预测时间序列的未来值 • 对自由格式文本进行分类 • 使用递归神经网络解决时间序列和文本问题 • 在RNN/LSTM和更简单的模型之间进行选择 • 在文本问题中训练和重用词嵌入模型。在这门课程的实践平台上,学员将在不同的公共数据集上亲自构建和优化自己的文本分类器和序列模型。先决条件:基础的SQL知识,熟悉Python和TensorFlow。

This course is an introduction to sequence models and their applications, including an overview of sequence model architectures and how to handle inputs of variable length. • Predict future values of a time-series • Classify free form text • Address time-series and text problems with recurrent neural networks • Choose between RNNs/LSTMs and simpler models • Train and reuse word embeddings in text problems You will get hands-on practice building and optimizing your own text classification and sequence models on a variety of public datasets in the labs we’ll work on together. Prerequisites: Basic SQL, familiarity with Python and TensorFlow

5、Recommendation Systems with TensorFlow on GCP(基于TensorFlow的推荐系统)

http://coursegraph.com/coursera-recommendation-models-gcp

谷歌云平台高级机器学习专项课程系列第四课:基于TensorFlow的推荐系统。在本课程中,将应用分类模型和嵌入(embeddings)的知识来构建充当推荐引擎的机器学习组件。 设计基于内容的推荐引擎 • 实现一个协同过滤推荐引擎 • 构建具有用户和内容嵌入的混合推荐引擎。

In this course, you’ll apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. • Devise a content-based recommendation engine • Implement a collaborative filtering recommendation engine • Build a hybrid recommendation engine with user and content embeddings

注:原创文章,转载请注明出处“课程图谱博客”:http://blog.coursegraph.com

本文链接地址:Coursera专项课程推荐:谷歌云平台上基于TensorFlow的高级机器学习专项课程(Advanced Machine Learning with TensorFlow on Google Cloud Platform Specialization) http://blog.coursegraph.com/?p=924

Coursera上数据科学相关课程(公开课)汇总推荐

Coursera上的数据科学课程有很多,这里汇总一批。

1、 Introduction to Data Science Specialization

IBM公司推出的数据科学导论专项课程系列(Introduction to Data Science Specialization),这个系列包括4门子课程,涵盖数据科学简介,面向数据科学的开源工具,数据科学方法论,SQL基础,感兴趣的同学可以关注:Launch your career in Data Science。Data Science skills to prepare for a career or further advanced learning in Data Science.

1) What is Data Science?
2) Open Source tools for Data Science
3) Data Science Methodology
4) Databases and SQL for Data Science

2、Applied Data Science Specialization

IBM公司推出的 应用数据科学专项课程系列(Applied Data Science Specialization),这个系列包括4门子课程,涵盖面向数据科学的Python,Python数据可视化,Python数据分析,数据科学应用毕业项目,感兴趣的同学可以关注:Get hands-on skills for a Career in Data Science。Learn Python, analyze and visualize data. Apply your skills to data science and machine learning.

1) Python for Data Science
2) Data Visualization with Python
3) Data Analysis with Python
4) Applied Data Science Capstone

3、Applied Data Science with Python Specialization

密歇根大学的Python数据科学应用专项课程系列(Applied Data Science with Python),这个系列的目标主要是通过Python编程语言介绍数据科学的相关领域,包括应用统计学,机器学习,信息可视化,文本分析和社交网络分析等知识,并结合一些流行的Python工具包进行讲授,例如pandas, matplotlib, scikit-learn, nltk以及networkx等Python工具。感兴趣的同学可以关注:Gain new insights into your data-Learn to apply data science methods and techniques, and acquire analysis skills.

1) Introduction to Data Science in Python
2) Applied Plotting, Charting & Data Representation in Python
3) Applied Machine Learning in Python
4) Applied Text Mining in Python
5) Applied Social Network Analysis in Python

4、Data Science Specialization

约翰霍普金斯大学的数据科学专项课程系列(Data Science Specialization),这个系列课程有10门子课程,包括数据科学家的工具箱,R语言编程,数据清洗和获取,数据分析初探,可重复研究,统计推断,回归模型,机器学习实践,数据产品开发,数据科学毕业项目,感兴趣的同学可以关注: Launch Your Career in Data Science-A nine-course introduction to data science, developed and taught by leading professors.

1) The Data Scientist’s Toolbox
2) R Programming
3) Getting and Cleaning Data
4) Exploratory Data Analysis
5) Reproducible Research
6) Statistical Inference
7) Regression Models
8) Practical Machine Learning
9) Developing Data Products
10) Data Science Capstone

5、Data Science at Scale Specialization

华盛顿大学的大规模数据科学专项课程系列(Data Science at Scale ),这个系列包括3门子课程和1个毕业项目课程,包括大规模数据系统和算法,数据分析模型与方法,数据科学结果分析等,感兴趣的同学可以关注: Tackle Real Data Challenges-Master computational, statistical, and informational data science in three courses.

1) Data Manipulation at Scale: Systems and Algorithms
2) Practical Predictive Analytics: Models and Methods
3) Communicating Data Science Results
4) Data Science at Scale – Capstone Project

6、Advanced Data Science with IBM Specialization

IBM公司推出的高级数据科学专项课程系列(Advanced Data Science with IBM Specialization),这个系列包括4门子课程,涵盖数据科学基础,高级机器学习和信号处理,结合深度学习的人工智能应用等,感兴趣的同学可以关注:Expert in DataScience, Machine Learning and AI。Become an IBM-approved Expert in Data Science, Machine Learning and Artificial Intelligence.

1) Fundamentals of Scalable Data Science
2) Advanced Machine Learning and Signal Processing
3) Applied AI with DeepLearning
4) Advanced Data Science Capstone

7、Data Mining Specialization

伊利诺伊大学香槟分校的数据挖掘专项课程系列(Data Mining Specialization),这个系列包含5门子课程和1个毕业项目课程,涵盖数据可视化,信息检索,文本挖掘与分析,模式发现和聚类分析等,感兴趣的同学可以关注:Data Mining Specialization-Analyze Text, Discover Patterns, Visualize Data. Solve real-world data mining challenges.

1) Data Visualization
2) Text Retrieval and Search Engines
3) Text Mining and Analytics
4) Pattern Discovery in Data Mining
5) Cluster Analysis in Data Mining
6) Data Mining Project

8、Data Analysis and Interpretation Specialization

数据分析和解读专项课程系列(Data Analysis and Interpretation Specialization),该系列包括5门子课程,分别是数据管理和可视化,数据分析工具,回归模型,机器学习,毕业项目,感兴趣的同学可以关注:Learn Data Science Fundamentals-Drive real world impact with a four-course introduction to data science.

1) Data Management and Visualization
2) Data Analysis Tools
3) Regression Modeling in Practice
4) Machine Learning for Data Analysis
5) Data Analysis and Interpretation Capstone

9、Executive Data Science Specialization

可管理的数据科学专项课程系列(Executive Data Science Specialization),这个系列包含4门子课程和1门毕业项目课程,涵盖数据科学速成,数据科学小组建设,数据分析管理,现实生活中的数据科学等,感兴趣的同学可以关注:Be The Leader Your Data Team Needs-Learn to lead a data science team that generates first-rate analyses in four courses.

1)A Crash Course in Data Science
2)Building a Data Science Team
3)Managing Data Analysis
4)Data Science in Real Life
5)Executive Data Science Capstone

10、其他相关的数据科学课程

1) Data Science Math Skills
2) Data Science Ethics
3) How to Win a Data Science Competition: Learn from Top Kagglers

注:原创文章,转载请注明出处“课程图谱博客”:http://blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/coursera上数据科学相关课程数据科学公开课汇总推荐 http://blog.coursegraph.com/?p=851