标签归档:R

Deep Learning Specialization on Coursera

Coursera上数据科学相关课程(公开课)汇总推荐

Coursera上的数据科学课程有很多,这里汇总一批。

1、 Introduction to Data Science Specialization

IBM公司推出的数据科学导论专项课程系列(Introduction to Data Science Specialization),这个系列包括4门子课程,涵盖数据科学简介,面向数据科学的开源工具,数据科学方法论,SQL基础,感兴趣的同学可以关注:Launch your career in Data Science。Data Science skills to prepare for a career or further advanced learning in Data Science.

1) What is Data Science?
2) Open Source tools for Data Science
3) Data Science Methodology
4) Databases and SQL for Data Science

2、Applied Data Science Specialization

IBM公司推出的 应用数据科学专项课程系列(Applied Data Science Specialization),这个系列包括4门子课程,涵盖面向数据科学的Python,Python数据可视化,Python数据分析,数据科学应用毕业项目,感兴趣的同学可以关注:Get hands-on skills for a Career in Data Science。Learn Python, analyze and visualize data. Apply your skills to data science and machine learning.

1) Python for Data Science
2) Data Visualization with Python
3) Data Analysis with Python
4) Applied Data Science Capstone

3、Applied Data Science with Python Specialization

密歇根大学的Python数据科学应用专项课程系列(Applied Data Science with Python),这个系列的目标主要是通过Python编程语言介绍数据科学的相关领域,包括应用统计学,机器学习,信息可视化,文本分析和社交网络分析等知识,并结合一些流行的Python工具包进行讲授,例如pandas, matplotlib, scikit-learn, nltk以及networkx等Python工具。感兴趣的同学可以关注:Gain new insights into your data-Learn to apply data science methods and techniques, and acquire analysis skills.

1) Introduction to Data Science in Python
2) Applied Plotting, Charting & Data Representation in Python
3) Applied Machine Learning in Python
4) Applied Text Mining in Python
5) Applied Social Network Analysis in Python

4、Data Science Specialization

约翰霍普金斯大学的数据科学专项课程系列(Data Science Specialization),这个系列课程有10门子课程,包括数据科学家的工具箱,R语言编程,数据清洗和获取,数据分析初探,可重复研究,统计推断,回归模型,机器学习实践,数据产品开发,数据科学毕业项目,感兴趣的同学可以关注: Launch Your Career in Data Science-A nine-course introduction to data science, developed and taught by leading professors.

1) The Data Scientist’s Toolbox
2) R Programming
3) Getting and Cleaning Data
4) Exploratory Data Analysis
5) Reproducible Research
6) Statistical Inference
7) Regression Models
8) Practical Machine Learning
9) Developing Data Products
10) Data Science Capstone

5、Data Science at Scale Specialization

华盛顿大学的大规模数据科学专项课程系列(Data Science at Scale ),这个系列包括3门子课程和1个毕业项目课程,包括大规模数据系统和算法,数据分析模型与方法,数据科学结果分析等,感兴趣的同学可以关注: Tackle Real Data Challenges-Master computational, statistical, and informational data science in three courses.

1) Data Manipulation at Scale: Systems and Algorithms
2) Practical Predictive Analytics: Models and Methods
3) Communicating Data Science Results
4) Data Science at Scale – Capstone Project

6、Advanced Data Science with IBM Specialization

IBM公司推出的高级数据科学专项课程系列(Advanced Data Science with IBM Specialization),这个系列包括4门子课程,涵盖数据科学基础,高级机器学习和信号处理,结合深度学习的人工智能应用等,感兴趣的同学可以关注:Expert in DataScience, Machine Learning and AI。Become an IBM-approved Expert in Data Science, Machine Learning and Artificial Intelligence.

1) Fundamentals of Scalable Data Science
2) Advanced Machine Learning and Signal Processing
3) Applied AI with DeepLearning
4) Advanced Data Science Capstone

7、Data Mining Specialization

伊利诺伊大学香槟分校的数据挖掘专项课程系列(Data Mining Specialization),这个系列包含5门子课程和1个毕业项目课程,涵盖数据可视化,信息检索,文本挖掘与分析,模式发现和聚类分析等,感兴趣的同学可以关注:Data Mining Specialization-Analyze Text, Discover Patterns, Visualize Data. Solve real-world data mining challenges.

1) Data Visualization
2) Text Retrieval and Search Engines
3) Text Mining and Analytics
4) Pattern Discovery in Data Mining
5) Cluster Analysis in Data Mining
6) Data Mining Project

8、Data Analysis and Interpretation Specialization

数据分析和解读专项课程系列(Data Analysis and Interpretation Specialization),该系列包括5门子课程,分别是数据管理和可视化,数据分析工具,回归模型,机器学习,毕业项目,感兴趣的同学可以关注:Learn Data Science Fundamentals-Drive real world impact with a four-course introduction to data science.

1) Data Management and Visualization
2) Data Analysis Tools
3) Regression Modeling in Practice
4) Machine Learning for Data Analysis
5) Data Analysis and Interpretation Capstone

9、Executive Data Science Specialization

可管理的数据科学专项课程系列(Executive Data Science Specialization),这个系列包含4门子课程和1门毕业项目课程,涵盖数据科学速成,数据科学小组建设,数据分析管理,现实生活中的数据科学等,感兴趣的同学可以关注:Be The Leader Your Data Team Needs-Learn to lead a data science team that generates first-rate analyses in four courses.

1)A Crash Course in Data Science
2)Building a Data Science Team
3)Managing Data Analysis
4)Data Science in Real Life
5)Executive Data Science Capstone

10、其他相关的数据科学课程

1) Data Science Math Skills
2) Data Science Ethics
3) How to Win a Data Science Competition: Learn from Top Kagglers

注:原创文章,转载请注明出处“课程图谱博客”:http://blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/coursera上数据科学相关课程数据科学公开课汇总推荐 http://blog.coursegraph.com/?p=851

Coursera课程下载和存档计划五:其他课程资源

本期整理了手头剩下的其他课程,限于个人精力有限,不整理归类了,请自取。这些公开课资源一些来自于之前课程图谱群内朋友的或者微博上的朋友的分享,另外一些这里做了下载补充,主要针对Coursera旧课程平台的课程进行备份和分享,对于一些已经迁移至新课程平台的课程,希望大家直接去Coursera新课程平台上去上课,这样会有更好的学习体验。最后特别说明的是,课程网盘资源仅供个人备份学习使用。

关于“Coursera课程下载和存档计划”,请参考:

  1. Coursera Downloader 下载工具
  2. Coursera课程速查表
  3. 机器学习 & 自然语言处理 & 推荐系统 & 数据挖掘相关公开课
  4. 计算机科学基础公开课

以下课程资源备份,相关信息我们也会同步到“Coursera Archive”项目上去:

29. 计算机科学入门课程: Computer Science 101

链接: http://pan.baidu.com/s/1dEXhOU9 密码: 6efk

30. 社交网络分析: Social Network Analysis

链接: http://pan.baidu.com/s/1kVheUMV 密码: pr7d

31. 台大概率课程:機率

链接: http://pan.baidu.com/s/1mis8w8C 密码: gqun

32. 科学计算:Scientific Computing

链接: http://pan.baidu.com/s/1mhN0sJI 密码: iiyn

33. 高性能科学计算:High Performance Scientific Computing

链接: http://pan.baidu.com/s/1kUP4jUB 密码: n8b5

34. Python入门课程:Learn to Program: The Fundamentals

链接: http://pan.baidu.com/s/1eSlZbR8 密码: fwr6

35. 函数式编程:Programming Languages

这门课程直接分享有问题,压缩了一下分享出来:

链接: http://pan.baidu.com/s/1c1AjzNE 密码: 8hb2

36. 线性代数应用课程:Coding the Matrix: Linear Algebra through Computer Science Applications

链接: http://pan.baidu.com/s/1cHVpsa 密码: qb4v

37. 异构并行编程 Heterogeneous Parallel Programming

关键词:GPU,CUDA

链接: http://pan.baidu.com/s/1pLznR2j 密码: taxa

38. 博弈论:Game Theory

链接: http://pan.baidu.com/s/1bFDh9s 密码: etxp

39. 大数据暑期学校:The Caltech-JPL Summer School on Big Data Analytics

链接: http://pan.baidu.com/s/1gfHffn9 密码: wfc3

40. 大数据课程:Web Intelligence and Big Data

链接: http://pan.baidu.com/s/1skWd9Nn 密码: dikb

41. Audio Signal Processing for Music Applications

链接: http://pan.baidu.com/s/1i5vwuQp 密码: 7di2

42. 图像和视频处理: Image and video processing: From Mars to Hollywood with a stop at the hospital

链接: http://pan.baidu.com/s/1i5NMCvj 密码: jq55

43. 离散优化: Discrete Optimization

链接: http://pan.baidu.com/s/1i49ZlgL 密码: cy2u

44. 线性优化和离散优化:Linear and Discrete Optimization

链接: http://pan.baidu.com/s/1gf7BFEz 密码: q5q6

45. 计算机视觉基础:Computer Vision: The Fundamentals

链接: http://pan.baidu.com/s/1qYgUX1i 密码: a2gm

46. 计量金融中的数学方法:Mathematical Methods for Quantitative Finance

链接: http://pan.baidu.com/s/1pKYP1H5 密码: eu5z

47. 模型思维:Model Thinking 模型思维

链接: http://pan.baidu.com/s/1nvvomQt 密码: x8g9

48. 统计学 & R语言:Statistics: Making Sense of Data

链接: http://pan.baidu.com/s/1c0utwM 密码: bs3b

49. 数字信号处理:Digital Signal Processing

链接: http://pan.baidu.com/s/1slgmZjJ 密码: wc9u

50. 逻辑导引:Introduction to Logic

链接: http://pan.baidu.com/s/1jIffsKQ 密码: fdm2

51. 软件定义网络:Software Defined Networking

链接: http://pan.baidu.com/s/1qXE4DIk 密码: bw62

52. Principles of Reactive Programming

链接: http://pan.baidu.com/s/1skSFMOl 密码: ht3j

53. 创业工程:Startup Engineering

链接: http://pan.baidu.com/s/1c2AzEuc 密码: j8jw

54. 台湾大学:中國古代歷史與人物--秦始皇

链接: http://pan.baidu.com/s/1boD9nWV 密码: fb99

55. 人类简史:A Brief History of Humankind

链接: http://pan.baidu.com/s/1mibD2vY 密码: pbx6

最后再推荐一个神器:coursera-dl-all

Extend the Coursera Downloader by downloading quizzes and assignments (and hopefully forum posts soon!). Uses coursera-dl in the process.

作为Coursera Downloader的扩展,可以下载问题和作业,今晚才发现,有点迟了,感兴趣的同学可以试用一下,这确实是一个很好的补充。

注:原创文章,转载请注明出处“课程图谱博客”:http://blog.coursegraph.com

本文链接地址:http://blog.coursegraph.com/coursera课程下载和存档计划五

2014年4月份MOOC部分热门课程汇总

近期MOOC的内容呈现出爆炸式的增长,各式各样的课程让人应接不暇。本文将对各大平台4月份预计比较热门的课程进行简单的汇总,各位可以根据自身的需求挑选合适的课程。

Coursera平台:

1. 美国西北大学的Everything is the Same: Modeling Engineered Systems 将于4月6日开课。本课主要讲述一些简单的物理工程实例,对物理学、工程学感兴趣的朋友可以关注。同时这门课程中会穿插Matlab和Python的内容,适合懂得一点编程的朋友。

2.马里兰大学的Exploring Quantum Physics将于4月7日开课,本课讲述的是量子物理。目前讲述量子物理方面的课程还不多,这门课或许是个不错的选择

3. 约翰霍普金斯大学的Getting and Cleaning Data将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分

4.约翰霍普金斯大学的R Programming将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分,R语言日益成为数据分析领域的首选工具,本门课程可以作为对这个工具入手的入门课程。

5. 约翰霍普金斯大学的The Data Scientist’s Toolbox将于4月7日开课。本课属于约翰霍普金斯大学 Data Science Specialization(“微专业”)的一部分,主要介绍了目前数据分析中会经常用到的工具,例如:Github,  MarkDown, R Console, R Studio等等

6. 上海交通大学的“唐诗宋词人文解读”将于4月8日开课。课程从喜闻乐见的唐诗宋词入手,触摸一段历史与一群文人的体温,领悟人生旅途的趣味和智慧。

7. 上海交通大学的“媒介批评:理论与方法”将于4月8日开课。“媒介批评”是现代大众传播学的重要分支,简单而言,就是批评媒介,是 对大众传播媒介本身进行批评,属于应用传播学的研究领域。

8. 密歇根大学的Programming for Everybody将于4月10日开课。在众多编程基础课中这门课属于新的成员,适合编程零基础的朋友。

9. 慕尼黑大学的Competitive Strategy将于4月11日开课:

@ototsuyume:

其实就是简单易懂的博弈论入门,课程量少老师讲得作业难度不高而且每道题都有说明,大概是大学里面公共通选课的难度,有空可以看看

10.科罗拉多大学博尔德分校的Physics 1 for Physical Science Majors将于4月14日开课。本课属于比较传统的大学物理,之前获得了不错的反响

11.慕尼黑大学的Introduction to Mathematical Philosophy将于4月14日开课。在现代的哲学研究中越来越多的需要思考很多底层的问题,在这期间免不了需要思考很多数学层面的问题,本课推荐给对数学或哲学领域感兴趣的朋友。

12.匹兹堡大学的Warhol将于4月21日开课。出生于匹兹堡市的Andy Warhol是20世纪最伟大的艺术家之一,波普艺术的创始人,对当代的艺术和文化产生了巨大的影响。本课将介绍Andy Warhol的生平和作品,让大家一睹大师的风采。

13.香港中文大学的“中國人文經典導讀”将于4月24日开课。本課程是以四堂演講的方式,分別討論中國文化的四個主要面向,彙文學、歷史、哲學、藝術于一爐。每一個主題以一篇或兩篇經典文本爲基礎,指導學生如何精讀作品,學習以欣賞和批判的雙重角度重新解讀經典,同時獲得對中國文字的陶冶和享受。它本爲大學一年級學生所設,但不限於中文系本科專業,希能為學生鑒賞中國傳統文化開啟新的視野。

14.瑞士洛桑联邦理工学院(EPFL)的Functional Programming Principles in Scala将于4月25日开课。本课之前几轮获得了极高的评价,主要通过Scala语言讲述函数式编程的思想。本课的讲师正是Scala语言的发明人。

15. 斯坦福大学的Algorithms: Design and Analysis, Part 1将于4月29日开课:

@超級現實的超現實理想主義者:

这门课对我的影响非常大,直接改变了我的思维方式,并且为日后的学习打下了很好的基础。

edX平台

1. MIT的Street-Fighting Math将于4月8日开课。如同街头打架一样,不论你使用什么招式,打架的唯一目的就是寻求胜利。各位接受了多年“严谨”的数学教育,不妨感受一下“Quick and Dirty”的数学方法。

2.哈佛大学的Justice将于4月8日开课。这门“公正”课早在MOOC出现之前就已经红遍国内互联网,想要重温或者学习这门经典课程的朋友不妨关注一下这门MOOC形式呈现的课程。

3.京都大学的The Chemistry of Life将于4月10日开课。该课属于化学和生物的入门课程。

学堂在线:

1. 清华大学的组合数学将于4月10日开课。随着计算机科学的发展,组合数学在这段时间里获得了极大的发展。不同于传统数学领域侧重于“连续”层面,组合数学解决的是“离散”层面的问题。本课将从基础的排列组合开始,逐步深入了解计数问题的不同解决思路,通过对现实生活中计数问题的演绎和学生们共同体会组合计数问题不断抽象深入的挖掘过程,引导学生共同感受数学知识的精妙,从而深入理解组合数学对计算机理论发展的推动作用。

2. 加州大学伯克利分校的云计算与软件工程—第一部分将于4月21日开课。本课的讲师是软件工程和计算机科学领域的大牛,课程主要通过Ruby on Rails等目前热门的互联网开发技术阐述诸如“云计算”、“敏捷开发”等软件工程领域热门的主题。

注:原创文章,转载请注明出处“课程图谱博客”:blog.coursegraph.com

本文链接: http://blog.coursegraph.com/2014年4月份mooc部分热门课程汇总